

Automotive Containerization Architecture for the Linux Based Instrument Cluster

Naoto Yamaguchi

Doctor of Informatics, Researcher Software Fundamental Technology Group Application Design Department Connected & Sharing Solutions Division AISIN CORPORATION

Introduction to Who I Am

- Name:
 - Naoto Yamaguchi
- Company:
 - AISIN CORPORATION

- Career
 - Received Doctor of Informatics in 2007 (Shizuoka-University).
 - Automotive RTOS platform software engineer since 2007.
 - Automotive Linux platform software engineer since 2011.
- My history of Open Source Community
 - Member of AGL Instrument Cluster Expert Group since 2019.
 - Joined to ELISA in 2019.

Outline

- Background
- QM Isolation Architecture
- AGL Instrument Cluster
- Conclusion

Outline

Background

- QM Isolation Architecture
- AGL Instrument Cluster
- Conclusion

EG scope and system image?

Motivation

- Create a base platform for Instrument Cluster, not a platform based on conventional IVI.
 - There are different system requirements between IVI and Cluster.
 - e.g.)Functional safety, boot time etc...
 - This platform is build from open source technology.
 - Need to independent from existing proprietary software component.
 - Need to be able to choice open source software component or proprietary software component.

Member

Dev. Lab.

What is the product development issues?

- Quality and Robustness
 - Functional safety (ASIL-B)
 - Instrument cluster has telltale function.
 - It show critical frailer information to driver.
 - Quality management
 - There have separate quality requirement between Instrument Cluster and IVI.

Why ASIL-B is required Instrument Cluster.

- Typically instrument cluster assigned ASIL-B.
 - Includes telltale function that is assigned ASIL-B.
 - ASIL-B was decomposed from other units.
 - Existing instrument cluster does not have ASIL from own functions.

Our approach

Puzzles in automotive quality management

• There are many puzzles in the automotive system (main function).

Rapid innovation

- New features are added
- Short-term development
- Rapid bug fixes

Instrument Cluster

- Advanced quality management
 - Full path coverage testing
 - Formal verification
 - Careful bug fixes

- Various functions
 - Many pre-installed applications

IVI

• Applications installed from store

Selected functions

Combinational verification Fast boot-up

Our approach

• Our answer to the puzzle issues is "one more isolation method" which takes one-more layer to isolate the functions by using Linux container technology.

Outline

- Background
- QM Isolation Architecture
- AGL Instrument Cluster
- Conclusion

What is Linux Container

- Operating system level virtualization method.
 - Running multiple isolated Linux systems (containers) on a host using a single Linux kernel.
 - Isolate root filesystems on Linux kernel by using chroot.
 - Control resource (such as cpu, memory) by using cgroups.
 - Hide resources from other containers by using namespace.
 - Easy to use in embedded environment.
 - Only require to Linux BSP.
 - No need additional virtualization driver development.
 - Can integrate container based system over hypervisor.

- Software stack isolation
 - We think so should separate root filesystem between Instrument Cluster and IVI.

• Instrument Cluster:

- Build by highly quality assurance software.
- Will not change after SOP without critical bug fix.
- IVI:
 - Build by standard software. Will change after SOP to upgrade function.
- Linux container realize root filesystem isolation.

- Resource isolation
 - Computing resource
 - Quickly response is required in instrument cluster container. It require to real-time scheduling.
 - When all of system build by real-time scheduling, must protect instrument cluster computing budget from IVI.
 - These context priority design is too complexly. Difficult to rapid innovative development in IVI container.
 - Memory resource
 - When all of memory was allocated, new memory allocation request cause forced process kill or process deadlock in typical linux system.
 - In this case, must protect instrument cluster memory budget from IVI.
 - These memory allocation issues need to be closed in the IVI.

- Computing resource isolation
 - CPU shielding based isolation using cgrpup cpuset.
 - It realize isolated scheduling class for instrument cluster container. We can use real-time scheduling isolated from other container.
- Memory resource isolation
 - Memory budget guarantee using cgroup memory
- Easy to re balancing, it's strong point against hypervisor.

Computing resource			
Other buget Fair scheduling cgroup .cpuset .cpus=6,7	IVI budget Fair scheduling cgroup .cpuset .cpus=2-5	Cluster budget Real-time scheduling cgroup .cpuset .cpus=0,1	
Linux Kernel Schduler			
core7 core6	core5 core4 core3 core2	core1 core0	

Memory resource			
Other buget	IVI budget	Cluster budget	
cgroup.memory = ZZZZ	cgroup.memory = YYYY	cgroup.memory = XXXX	

• Hide resources from other containers

- IVI container has connected and connectivity device such as Blutooth, wifi, LTE and more.
 - In cyber security point of view, these device should insert into container and hide to other container.
- Device hiding is most easy ways to protect from illegal device access.
 - Network name space realize network device hiding.
 - Mount namespace realize character and block device hiding.

Other namespace	IVI namespace		Cluster namespace
	Network namespace WIFI LTE	Mount namespace BT UART Disp. IVI data Dev.	
Container host			
Linux Kernel			

- System container vs application container
 - System Container
 - It realize to isolated linux system.
 - Application Container
 - It realize to isolated application runtime environment.
- Choice a system container
 - To realize container local lifecycle management.
 - To realize light weight application container inside IVI container.

- Summary for QM Isolation
 - Software type based isolation using Linux container technology.
 - Software binary isolation using chroot.
 - Common resource isolation using cgroup.
 - Device isolation using namespace based hiding.
 - Each container build by system container.
 - To support container local lifecycle.

Outline

- Background
- QM Isolation Architecture
- AGL Instrument Cluster
- Conclusion

AGL Instrument Cluster

- AGL Lamprey released in July.
 - Upstreaming start.
 - Most basic integration feature was merged.
 - This release support container integration using Yocto.
- AGL Marlin will release in Feb.
 - Some common software will merge.
 - Some development issue will fix.
 - Some demo software will merge to evaluate AGL Instrument Cluster architecture.

Status for Lamprey release

- Most basic integration feature was merged.
 - Limited container host and cluster container are available.
 - Display isolation feature is integrated. But it support single display only.
 - Demo GUI is available. It support standalone demo.
 - Support container image build using Yocto.
 - R-Car H3/M3 starter kit without kingfisher board support only.

Demo Display 1920x1080 R-CarH3

Plan for Marlin release

- Some common software will merge.
 - IC service framework.
 - ICCOM.
 - Multiple display support.
 - Guest networking support.
 - Sound support.
- Some development issue will fix.
 - Firmware downloading.
 - Input device support at compositor in container.
- Some demo software will merge.
 - IC service for demo.
 - IVI demo application.
 - Ref-hw support.

Plan for Marlin release

- Some common software will merge.
 - IC service framework.
 - ICCOM.
 - Multiple display support.
 - Guest networking support.
 - Sound support.

We will merge some new features into AGL Marlne

- Some release.
 - Firr In this topic, we share a part of new features design.
 - Input device support at compositor in container.
- Some demo software will merge.
 - IC service for demo.
 - IVI demo application.
 - Ref-hw support.

	Other Container	IVI Container	Cluster Container	Safety Function
lne	Contair	her host	Container runtime	
ign.	nux Kernel			RTOS / Non-OS
SoC (R-Car Gen3)				MCU
Infota	ainment Dis 1920x1080	splay R-CarH3	8+Kingfisher	Cluster Display 1920x720

Function Block Assignment Definition

- Safety monitoring and real-time function which includes device access shall be assigned outside of AGL.
- All of the other cluster function shall be assigned onto the cluster container.

Cluster Service and UI

- Cluster container shall consist of IC-Service and Cluster-UI component.
 - IC-Service shall consist of a function logic.
 - Cluster-UI shall consist of an UI state machine and assets.
 - IC-Service shall be separated by a model dependency.

IC-Service Interfaces

- IC-Service shall consist of the three type of interface.
 - Cluster-UI shall be defined a separated process.
 - Model dependent service shall be called from IC-Service as a common interface.
 - IC-Service shall communicate with outside of container.

GRADE LINU

IC Service Framework

- IC service framework consist from Common API library and Inter process communication library.
 - It designed for instrument cluster use case.
 - Already merged in AGL master branch.
 - Design document and API specification published in AGL confluence.

Multiple Display Support

- Basic design
 - Cluster and IVI have one own display.
 - Each container have compositor inside a container.
- Issue
 - One drm display device has one or more displays.
 - ex. card0-HDMI-A-1, card0-HDMI-A-2, card0-DVI-D-1
 - That device shall manage by only one process, it call drm master. The drm master is usually assumed by compositor.
 - What does this mean?
 - One display device can manage by only one compositor.
- Our solution
 - Create drm lease manager to realize multiple compositor using drm lease kernel feature.
 - The drm lease kernel feature is introduced in 4.15.

Drm Lease Manager

- Basic design
 - The traditional drm master (fd), created by opening /dev/dri/cardX, which can create and lease out resources to other DRM Masters. The drm lease manager takes on this role.
 - Each compositor controls resources leased from drm lease manager.
- Control flow
 - A) DRM Lease Manager(daemon) opens DRM device and creates lessee DRM Masters for each client.
 - B) Sends lessee file descriptor to clients (via lease client library) when requested
 - C) Clients render directly to DRM device using lessee
 - D) DRM Lease Manager revokes lessee when the client is finished with it.

For product use case

- In product use case
 - The cluster screen show a part of the IVI information such as map, music track and A/C.
- Our proposed design
 - IVI container render two display images.
 - One is CID image. It will be rendered directly to the center information display.
 - Another one is a shared image for cluster display. It shall be rendered onto the virtual display.
 - Cluster image is rendered another channel of the virtual display.
 - Both image shall be composite by H/W.
 - And then, final image shall be displayed onto the cluster display.
- This implementation is highly depend on BSP.
 - These are TODO task.

Plan for Marlin release

- Some common software will merge.
 - IC service framework.
 - ICCOM.
 - Multiple display support.
 - Guest networking support.
 - Sound support.
- Some development issue will fix.
 - Firmware downloading.
 - Input device support at compositor in container.
 - We have solved various integration issues for en
- Some de container through this development.
 IC service for define.

 - IVI demo application.
 - Ref-hw support.

	Other Container	IVI Container	Cluster Container	Safety Function
	Contair	her host	Container runtime	
	Linux Kernel			RTOS / Non-OS
em) d.				
Infota	ainment Dis 1920x1080	splay R-CarH3	8+Kingfisher	Cluster Display 1920x720

Firmware downloading

- Typical behavior for firmware downloading.
 - When driver need firmware, firmware downloader read firmware file from root file system. When that firmware downloading is triggered, it's depend on driver implementations.
 - At kernel module loading.
 - Kernel modules are only loaded by host triggers. In this case, it is not having a issue.
 - At 1'st device file open.
 - Device file are opened by both host and guest. In this case, it is having a issue.
- What is issue
 - Firmware downloader inherit mount namespace.
 - When triggered from host, firmware read from host root file system by firmware downloader.
 - When triggered from guest, firmware read from guest root file system by firmware downloader.
 - In this case, firmware download will fail.

Firmware downloading

- In kernel upstream, firmware downloader is improved in 5.7.
 - Firmware downloader doesn't inherit mount name space. In this case we can controlling which firmware is downloading.
 - Patch
 - https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/co mmit/?id=901cff7cb96140a658a848a568b606ba764239bc&h=li nux-5.7.y
 - Renesas R-Car Gen3 boards migrate kernel version from 5.4 to kernel 5.10 in current master branch.
 - This fix already merged.
 - The default kernel version of yocto dunfell is kernel 5.4. This version is not merged this patch.
 - We tried to back port this patch, it's successfully. No needed to additional modify from original patch.

Input device support at compositor in container

- Current guest container is not support input device
 - Weston use libinput to detect and handle input devices.
 - The libinput depend on libudev and udev-data that is created by udevd.
 - udev-data: /var/run/udev/data/*
- What is issue
 - Libinput highly depend to udev.
 - Systemd-udev couldn't work in guest.
 - Device event pass to only host from kernel. Can't receive in guest.
 - Same situation for eudev.
 - Udev-data is not created, libinput can't find input device.
 - Weston can't handle input device in guest.

Input device support at compositor in container

- libudev-zero
 - Daemonless udev implementation replacement for libudev.
 - <u>https://github.com/illiliti/libudev-zero</u>
 - libusev-zero support udevd less input device detection based on sysfs scanning.
 - When guest container mounts sysfs, libinput can detect input device informed by libudev-zero.
- Our proposed design
 - Libudev-zero use in guest to realize generic input device detection method.
 - Current issue:
 - When libudev replace to libudev-zero, it require to hard HACK to systemd recipe such as forces remove systemd-udevd and libudev from systemd packages.
 - We are now investigating what is more better integration such as libudev-zero will be static linking to libinput.

Plan for Marlin release

- Some common software will merge.
 - IC service framework.
 - ICCOM.
 - Multiple display support.
 - Guest networking support.
 - Sound support.
- Some development issue will fix.
 - Firmware downloading.
 - Input device support at compositor in container.
- Some demo software will merge.
 - IC service for demo.
 - IVI demo application.
 - Ref-hw support.

Some demo software will merge.

- IC service framework is already merged in master branch.
 - We develop reference cluster service.
 - Pseudo signal generator passed vehicle information to IC service using ICCOM.
 - Ref-GUI draw speed meter, telltale and more vehicle information, those are received from IC service.
- IVI container is now developing.
 - Sample Navigation, Media Player, Home UI are already merged.
 - These are running on weston with IVI extension.
 - These software are only for demo and evaluation for container environment. Will replace AGL IVI profile based software in future release.

Some demo software will merge

- In initial release at Lamprey, IC software stack run on R-Car H3/M3 Starter Kit with Full HD Display only.
 - It already released.
- In Marlin release, IC software stack with demo IVI run on R-Car H3/M3 Starter Kit on Kingfisher board with two Display.
 - It already merged.
- AGL Ref-HW support merged in last week.

Conclusion

- In this presentation, I talked about AGL Instrument Cluster expert group activity.
 - AGL Instrument Cluster expert group is a most active expert group for AGL expert group.
 - EG activities are contributed by many members around the world.
- In this year, we set mile stone that is build up initial software stack.
 - This mile stone will achieve with the Marlin release.
- In next year, we will resume OSS qualification task.
 - This activity of this year was sharing in AGL Tech Day. This activity aim to create OSS assessment standard and assessment software stack for Instrument Cluster.

Thank You