
Analysis and Refinement of Architecture
for Realizing AGL Instrument Cluster

- AGL All Member Meeting Spring 2021 -
18.March.2021

Masanori Maruyama
Nippon Seiki Co.,Ltd.

Naoto Yamaguchi
AISIN AW CO.,LTD.

Today’s Presenters

Name :
Naoto Yamaguchi

Company :
AISIN AW CO.,LTD.

Career :
Automotive platform software
engineer since 2007.

Name :
Masanori Maruyama

Company :
Nippon Seiki Co.,Ltd

Career :
Automotive software
engineer since 2003.
(Cluster, HUD)

Contents
1. Architecture Overview

1. Container Architecture
2. Function Block Assignment
3. Cluster Container
4. IC-Service Interface
5. IC-EG Scope
6. Data Flow Example

• ICCOM
• Input Manager
• Window Manager
• Sound Manager

2. Quality Management Process

EG scope

Container Architecture – Overview

Isolated by Container

Cluster Function and IVI Function shall be separated by Linux Container Technology
in order to achieve QM isolation.

Other
Container

Container host

Isolation method (low layer)

Linux Kernel

Container runtime

IVI
Container

Cluster
Container Safety

Function

SoC MCU

RTOS / Non-OS

EG scope

Container Architecture – Overview

Isolated by Container

Cluster Function and IVI Function shall be separated by Linux Container Technology
in order to achieve QM isolation.

Other
Container

Container host

Isolation method (low layer)

Linux Kernel

Container runtime

IVI
Container

Cluster
Container Safety

Function

SoC MCU

RTOS / Non-OS

For Rapid Innovation and Bug Fixing
The runtime environment is isolated
from other software stacks by container
to realize rapid innovation.

For Advanced Quality Management
Selected software with full path coverage testing
and formal verification.

For Fast Boot
Miniaturized rootfs with minimum functions.

QM Isolation
Main functions are isolated based on their
QM level, booting time, incident type, etc.

Other Container IVI Container Cluster Container Safety / Real Time Function

Function Block Assignment
Safety monitoring and real time function which includes device access shall be assigned outside of AGL.

- All of the other cluster function shall be assigned onto the cluster container.

Container host

Linux Kernel

SoC MCU

RTOS / Non-OS

Input
Manager

DRM Lease
Manager

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

LIN CAN etc.

Safety
Monitor

SPEED TACHO
Shift

Position

Telltale

TEMP

etc.

Fuel
Consumption

ACC

Warning ECO

Traffic
Sign

User
Customize

Maintenance
Energy
Flow

BT USB

Sound
Manager

Display
Manager

Video
Stream

SDL

HFP
Tuner

Control

WiFi
Touch

Display

Radio Audio

CarPlay
Android

Auto

Rear
Camera

etc…

Turn by
Turn

Traffic
Sign

ICCOM DRM

Cluster Container – Overview
Cluster container shall consist of IC-Service and Cluster-UI component.

• IC-Service shall consist of a function logic.
• Cluster-UI shall consist of an UI state machine and assets.
• IC-Service shall be separated by a model dependency.

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

IC-Service

Cluster-UI

Model
Dependent

Service

Input
Manager

DRM Lease
Manager

ICCOM DRM

IC-Service Interface
IC-Service shall consist of the following three interface.

1. Cluster-UI shall be defined a separated process. Inter Process Communication
2. Model dependent service shall be called from IC-Service as a common interface. Function Call
3. IC-Service shall communicate with another container or container host. Inter Container Communication

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

IC-Service

Cluster-UI

Model
Dependent

Service
Abstraction

Layer
Model

Dependent API

1. Inter Process Communication

3. Inter-Container Communication

2. Function
Call

Common APIModel Dependent API

Input
Manager

DRM Lease
Manager

ICCOM DRM

IC-EG Scope
IC-Service logic and common API shall be fully provided by IC-EG.

• The others shall be prepared as for a reference model by IC-EG.

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

IC-Service

Cluster-UI

Model
Dependent

Service
Abstraction

Layer
Model

Dependent API

Common APIModel Dependent API

Input
Manager

DRM Lease
Manager

ICCOM DRM

Contents

1. Architecture Overview
1. Container Architecture
2. Function Block Assignment
3. Cluster Container
4. IC-Service Interface
5. IC-EG Scope
6. Data Flow Example

• ICCOM
• Input Manager
• Window Manager
• Sound Manager

2. Quality Management Process

Data Flow – 1. ICCOM
ICCOM is responsible for vehicle signal handling which transferred from MCU. (i.e. CAN)

• ICCOM socket shall be directly opened in application container, and not in the container host.
• Keeping advantage of peer to peer communication shall reduce latency and complexity.

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

LIN CAN etc.

Safety
Monitor

CAN

ICCOM

IVI-UI

IVI
Service

API

VxICCOM

IC-Service

Cluster-UI

Model
Dependent

Service

VxICCOM

Common APIModel Dependent API

SPI

SPISPI

Input Manager

VxICCOM

ICCOM

1. ICCOM – e.g. HMI Speed Meter
ICCOM is responsible for vehicle signal handling which transferred from MCU. (i.e. CAN)

• ICCOM socket shall be directly opened in application container, and not in the container host.
• Keeping advantage of peer to peer communication shall reduce latency and complexity.

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

LIN CAN etc.

Safety
Monitor

ICCOM

IC-Service

Cluster-UI

VxICCOM

Common APIModel Dependent API

SPISPI

Port:123

Port:123

Cluster Image Rendering

ICCOM

CAN

42km/h

42km/h

Data Flow – 2. Input Manager
Input Manager is responsible for event data handling such as physical input device.

• Application container shall register to container host as a listener for specific event.
• Container host sends the event to the registered application container.
• Application container checks if it consumes the event, send back the result to the container host.
• In case of multiple container registered, the event shall be handled by pre-defined priority.

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

etc.

Safety
Monitor

H/W Input (H/W Switch with display, etc.)

Device
Driver

IVI-UI

IVI
Service

API

Input
Manager

IC-Service

Cluster-UI

Model
Dependent

Service
Input

Manager

Common APIModel Dependent API

Input Manager

VxICCOM

ICCOM

SPISPI

LIN CAN

ICCOM

LIN

2. Input Manager – e.g. H/W switch

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

LIN etc.

Safety
Monitor

H/W Input (H/W Switch with display, etc.)

Device
Driver

IVI-UI

IVI
Service

API

IC-Service

Cluster-UI

Model
Dependent

Service

Common APIModel Dependent API

Input
Manager

CAN

4.Notify6.Notify

3.Key Push

1.Resister
5.Response

Input Manager

Input
Manager

2.Resister
7.Response

ICCOM

Input Manager is responsible for event data handling such as physical input device.
• Application container shall register to container host as a listener for specific event.
• Container host sends the event to the registered application container.
• Application container checks if it consumes the event, send back the result to the container host.
• In case of multiple container registered, the event shall be handled by pre-defined priority.

2. Input Manager – e.g. LIN(Steering Switch)

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

CAN etc.

Safety
Monitor

IVI-UI

IVI
Service

API

IC-Service

Cluster-UI

Model
Dependent

Service

Common APIModel Dependent API

SPI

SPISPI

Input
Manager

VxICCOM

3.Event

ICCOM

LIN(Steering Switch)

LIN

ICCOM

4.Notify6.Notify 1.Resister
5.Response

2.Resister
7.Response

Input
Manager

Input Manager

Input Manager is responsible for event data handling such as physical input device.
• Application container shall register to container host as a listener for specific event.
• Container host sends the event to the registered application container.
• Application container checks if it consumes the event, send back the result to the container host.
• In case of multiple container registered, the event shall be handled by pre-defined priority.

Data Flow – 3. Window Manager
Multiple container DRM sharing shall be done by introducing DRM Lease Manager.

• GPU rendering/composition shall be done in application container, not container host.
• It allows application container to render directly to the DRM device.
• It ensures other containers can still display their HMI via Weston.
• It allows both types of containers to render to the DRM device in parallel.

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

Cluster TFT Display

Cluster-UI

Center Information Display

DRM

libdrm

Lease
Manager

Wayland Compositor

IPC

Direct
Rendering

IVI-UI

libdrm

Wayland Compositor

CRTC0CRTC1

Hardware Composite

3. Window Manager – e.g. IPC

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

IVI Image Rendering

CID Display Image

TFT Display Image

Cluster TFT Display

Cluster-UI

Center Information Display

DRM

libdrm

Lease
Manager

Wayland Compositor

IPC

Direct
Rendering

IVI-UI

libdrm

Wayland Compositor

CRTC0CRTC1

Turn by Turn Info

Multiple container DRM sharing shall be done by introducing DRM Lease Manager.
• GPU rendering/composition shall be done in application container, not container host.
• It allows application container to render directory to the DRM device.
• It ensures other containers can still display their HMI via Weston.
• It allows both types of containers to render to the DRM device in parallel.

Cluster Image Rendering

3. Window Manager – e.g. H/W Composite

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

IVI Image Rendering Cluster Image Rendering

CID Display Image

Cluster TFT Display

Cluster-UI

Center Information Display

DRM

libdrm

Lease
Manager

Wayland Compositor
Direct
Rendering

IVI-UI

libdrm

Wayland Compositor

CRTC0CRTC1

Multiple container DRM sharing shall be done by introducing DRM Lease Manager.

Virtual
Display 0

Virtual
Display 1

H/W Compositor

CRTC1

Virtual
Display 1 Virtual

Display 0

TFT Display Image

Data Flow – 4. Sound Manager

Other Container

Container host

Linux Kernel

IVI Container Cluster Container Safety Function

SoC MCU

RTOS / Non-OS

Mixer/Router

FUEL Alarm Backlight

ODO/Trip DIAG DTC

System CAN-NM EOL

LIN CAN etc.

Safety
Monitor

Car Speaker Cluster Speaker

dev/snd dev/snddev/snd

Cluster App

Media player

Bluetooth HF

Speech recog.

navigation

Microphone

Sound
manager

Sound manager

• Data from cluster container shall not be mixed with IVI, and device for cluster shall be independent.
• Data mixing/routing shall be done by container host or external chip(like DSP).
• Sound manager in container host will control volume of IVI application by cooperating with sound manager in IVI
• Sound manager in host shall manage system wide policy, and sound manager in IVI shall manage policy in IVI world.

Contents

1. Architecture Overview
1. Container Architecture
2. Function Block Assignment
3. Cluster Container
4. IC-Service Interface
5. IC-EG Scope
6. Data Flow Example

• ICCOM
• Input Manager
• Window Manager
• Sound Manager

2. Quality Management Process

Today’s Presenters

Name :
Naoto Yamaguchi

Company :
AISIN AW CO.,LTD.

Career :
Automotive platform software
engineer since 2007.

Name :
Masanori Maruyama

Company :
Nippon Seiki Co.,Ltd

Career :
Automotive software
engineer since 2003.
(Cluster, HUD)

Previous discussion

• Why need quality management process?

• AGL is linux based platform development project for automotive use case.

• AGL has been developed for IVI use cases. There ware not much emphasis on software quality.

• Any existing open source can add to AGL distribution without quality check.

• Not defined coding standard.

• Not defined documentation standard.

• Instrument cluster expert group started quality management process discussion since
2020.

• We investigated to Automotive SPICE and existing open source development process.

• Our first activity already shared in last AMM.

What we aim

• We want to create workflow from open source development to product development.

• Want to be able to certify that it has quality control.

• Want to be able to embrace by open source community and industry.

Trust &
Certify Certify

Existing
OSS

Existing
OSS

Certify

AGL
OSS

(parts)

AGL Community
(QM world)

Monitoring
&Certify

Assemble

Assemble

Assemble

Industry

Distribute

Industry
software

Monitoring
&Certify

Assemble

Production

What we aim

• We want to create workflow from open source development to product development.

• Want to be able to certify that it has quality control.

• Want to be able to embrace by open source community and industry.

Trust &
Certify Certify

Existing
OSS

Existing
OSS

Certify

AGL
OSS

(parts)

AGL Community
(QM world)

Monitoring
&Certify

Assemble

Assemble

Assemble

Industry

Distribute

Industry
software

Monitoring
&Certify

Assemble

Production

Today focusing point:
How to asses to exiting OSS.

Software quality in the production case

• In production case.

• This software doesn't have bug in the own product use case.

• If this product does not use wifi function of linux kernel, we can break it.

• This software allows for many workarounds.

• When this system has hardware bugs, this software implement workaround to recover hardware bugs.

• This software allows for own product specific design.

• We can change special interface from original interface to reduce own development cost in this product.

• In AGL platform case. Is that same?

• The answer is NO.

What is software quality in reusing case?

• What is the difference between product development and AGL development?

• Existing OSS is developed by own use case, typically it is not fully match to
automotive specific use case.

• When AGL community are reusing existing OSS, AGL community should realize automotive specific
use case by architectural design. This architectural design must not break.

• AGL community shall share the document, that describe to why need this OSS.

• This topic activity is shared in last presentations.

• Existing OSS is developed by own community rule.

• Not all communities have such rules. On the other hand this community policy must be respected.

• In this case, AGL community shall select OSS based on own policy.

How to do?

• When in case of requirements assign to existing OSS, we have to trust these OSS.

• That means AGL community have to certify existing OSS.

• Automotive SPICE define these method in REU.2 (Reuse Program Management).

• It’s good reference.

REU.2. BP1 Define organizational reuse strategy.

BP2 Identify domains for potential reuse.

BP3 Assess domains for potential reuse.

BP4 Assess reuse maturity.

BP5 Evaluate reuse proposals.

BP6 Implement the reuse program.

BP7 Get feedback from reuse.

BP8 Monitor reuse.

How to select existing OSS

• Automotive SPICE requires nine work products in REU.2.

• What should we do?

REU.2. 04-02 Domain architecture.
Design and describe to "which OSS will handle which functions".

04-03 Domain model.

08-17 Reuse plan.

Define the assessment rule.09-03 Reuse policy.

12-03 Reuse proposal.

13-04 Communication record. Record the content of the assessment review.

15-07 Reuse evaluation report. Review for the these documents.

15-13 Assessment/audit report. Describe to the assessment result based on assessment rule.

19-05 Reuse strategy. Define to the reusing process.

Define the assessment rule

• Instrument Cluster expert group defined assessment rule draft.

• This assessment rule consists of five items.

• License

• Define the acceptable OSS license.

• Community check list

• Define the good OSS community criteria.

• Long Term Stable

• To be discuss.

• Source code assessment

• Understand the risks in this source code.

• Requirement matching

• To be discuss.

License

• AGL community has been a common understanding about OSS licensing. But it is not
documented.

• We documented this common understanding.

Community check list

• Why need this checklist?

• How do you think about good code?

• We think so;

• Described by common style.

• It is much easier to understand a large codebase when all the code in it is in a consistent style.

• Reviewed by many contributors.

• This is also the common sense of open source.

• Frequently tested.

• It is important to use tests to find regressions.

• Etc…

• We want to define to quality check guide line for the OSS in AGL instrument cluster.

• It's based on common sense of open source and automotive software.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

It is important to define the rules for the development of community.

If the software is developed under the common rules, the risk of the

declining software quality is low.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

When found the bugs such as CVE, we must know that bugs is including or not in

this version. If that OSS has been released with versioning, we can check easily.

When we can get change logs, we can check to "this version up shall deriver to

own product or not?".

These points are important points after SOP.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

When OSS community has bug tracking system, we can know "which

bug is not fixed now". But this is a difficult request for small OSS

community.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

When this OSS has and maintain a test suite, this OSS is tested

frequently. And we can test self building binary in own environment.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

When this OSS is used in major distribution, this OSS is tested by many

developer in many environment.

In this case, it is more likely that bugs will be found and fixed.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

This is very sad...

When this OSS is developed by one contributor. If he is dead, this OSS

will not maintain.

Community check list

No. Requirement Req. level

(Draft)

1 Defining the coding rule or guideline Must

2 Defining the contribution rule Must

3 Defining the release rule. Must

4 Providing a change logs. Must

5 Have a bug tracking system or other bug report

and fix solution such as active mailing list,

github issue, etc..

Should

6 Have and maintain a test suite. Should

7 Used in popular distributions such as RHEL,

SUSE, Ubuntu, Debian.

Should

8 2 or more active contributors. Should

9 Including OIN(Open Invention Network)

packages list

Recommend

When this OSS is including in OIN safe lists, it doesn't have patent risk.

Source code assessment

• Community check list is defined how to asses to the health of community.

• Source code assessment aim to check source code quality using static analysis tool.

• We are not aiming for a MISRA C check. MISRA C rule is now conflicting to existing OSS coding
guideline such as Linux kernel coding style.

• We are aiming for understanding the risks of the code.

• Jan-Simon Moeller is strongly support to this assessment infrastructure.

• Thanks for his contributions.

Conclusion

• In this session, maruyama-san shared architecture of the AGL instrument cluster in 1st

part. Our expert group is developing the code based on this architecture now.

• I shared activity of the quality management in the AGL instrument cluster expert group
in 2nd part. This work is big challenge. Our expert group is developing the software
stack based on this document. And it is evaluating to this method in parallel.

• If you are interesting this session, please join our expert group.

