
Topics

• Architecture overview

• Graphics

• Sound

• CAN

IVI App ContainerIVI App Container

Container based architecture

• Show Basic architecture

• It is a breakdown of the abstract architecture.

Abstract architecture

Other

Container host

Isolation method (low layer)

Linux Kernel

Low IVI Low

Cluster

S
a

fe
ty

 fu
n

c
tio

n

Update

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Compositor

Window Manager

Sound Server

Media Server

Cluster Service

Cluster AppUpdater

Basic architecture

IVI App

System ContainerSystem Container
Application
Container

Application
Container

App. Manager

Automotive Use Case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• Container host

• Manage the lifecycle of each container.

• Needs to be lightweight to realize fast boot.

• The static service container (such as cluster, ivi privilege) is started at boot time, and the dynamic
service container (such as ivi app) is started by request from the privileged container.

• Configure devices and communication resources.

• Control the permissions the guest.

• Detects update completion and switches the container image.

• When a security hole (threatens container isolation) is discovered, it must be fixed quickly.

Automotive Use Case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• Cluster

• Provides cluster function

• Cluster software such as meter drawing, fuel calculation, etc. is included.

• Built with a limited software stack. It integrate using advanced quality management
method.

• Needs a display, GPU, sound, CAN and some sensors.

• Must be started second in the system to realize fast boot.

Automotive Use Case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• IVI Privilege

• In charge of management.

• Manage to sound and graphics for guests excluding cluster.

• Manage to IVI applications using container manager API.

• Capabilities, resources, etc.

• Needs a display, GPU, sound.

Automotive Use Case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• IVI App

• Provides IVI function

• Divide in units of IVI applications such as silicon audio player,
telephony, Car Play, etc.

• Operates with limited resources and permissions.

• Needs a graphic (with GPU), sound, CAN, IP network, dynamic
device (such as USB Flash, SD Card) and some inputs and
outputs.

Automotive Use Case – Many Issues

• Key Issue

• Graphics Management

• How to isolate and share the graphics stacks.

• Sound Management

• How to isolate and share the sound device.

• CAN Network Management

• How to deliver and hide the CAN data.

• Other Issue

• Dynamic Device (USB, SD Card, etc.) Management

• IP Network Management

• Container Management and Update

Topics

• Architecture overview

• Graphics

• Sound

• CAN

Architecture overview graphics

• Basic Linux graphics block diagram / types of GUI application

Linux Kernel

DRM/KMS

Display 0 Display 1 … GPU

Server side

Compositor
Window

Manager

Scope of Window System

Client side

Out of Window System

App Type A

Direct

Rendering

App Type B

Remote

Rendering

App Type C

Direct

Rendering

App Type D

Remote

Rendering

fbdev

OGL, libdrm

OGL, libdrm

Split into multiple containers

Container

B-2

Everything into single container

Architecture overview graphics

• Selections of Linux container integration for GUI apps

Linux Kernel
DRM/KMS

Display 0 Display 1 … GPU

Server side

Compositor
Window

Manager

Scope of Window System

Client side

App A App B

fbdev

Container runtime

Container A Container

B-1

Container C Container D

Server side

Composit

or

Window

Manager

Client side

App A App B

App C App D

Architecture overview graphics

• Selections of Linux container integration for compositor

Display 0

Server side

Secondary

Compositor

Window

Manager

Scope of Window System

Client side

Out of Window System

App Type B

Remote

Rendering

Everything into Single display Split into Multiple display

Display 0 Display 1

Primary Compositor

(Screen Management)

Container runtime

Server side

Secondary

Compositor

Window

Manager

Scope of Window System

Client side

Out of Window System

App Type A

Direct

Rendering

App Type B

Remote

Rendering

Container runtime

Linux Kernel Linux Kernel

Primary Compositor

(Screen Management)

App Type A

Direct

Rendering

OGL, libdrm
App Type C

Direct

Rendering

App Type D

Remote

Rendering

OGL, libdrm

OGL, libdrm
App Type C

Direct

Rendering

App Type D

Remote

Rendering

Sharing device between Safety and Main functions

• Example of sharing display-output between Safety RTOS and Linux IVI/Cluster

Linux Kernel

DRM/KMS

Display 1 … GPU

Server side

Compositor
Window

Manager

Scope of Window System

Client side

Out of Window System

App Type A

Direct

Rendering

App Type B

Remote

Rendering

App Type C

Direct

Rendering

App Type D

Remote

Rendering

fbdev

OGL, libdrm

OGL, libdrm

Isolation method (low layer)

Display 0

Virtual

Display 0

Safety RTOS

Safe Display Driver

Topics

• Architecture overview

• Graphics

• Sound

• CAN

Requirement from sound usecase
Requirement of container runtime role from sound view point of view

Container resource management

• Approve container to look devices/files/sockets to output audio stream and realize isolation of device.

• Guarantee specific container can work even if IVI container consumes resource high

Container Lifecycle Management

• Launch/Stop containers dynamically (e.g. SDL container starts when device is plugged)

IVI Container A

Application

Cluster Container

Application

Container Runtime

Linux Kernel

snd snd

Audio stream

IVI Container B

Application ….
e.g.
phone

e.g.
navigation

snd Isolate

device
Attach

device

Launch/
Stop

Limit resources

Issue of sound architecture in container

Isolate sound device

• For QM container, it is better to isolate from IVI containers to avoid conflict

• To prohibit other containers access to the device QM container access is good
solution to cost down the verification.

Privileged
Container

IVI Container A

Application

Cluster Container

Application

Container Runtime

Linux Kernel

snd snd

Audio stream

IVI Container B

Application ….
e.g.
phone

e.g.
navigation

snd

Issue of sound architecture in container

Sharing sound devices

• Container Runtime approves containers to access the ALSA sound devices.

• In the case that a sound device is approved to access to several containers

• But only one application can access the device, so can’t manage(mixing, routing)

Privileged
Container

IVI Container A

Application

Cluster Container

Application

Container Runtime

Linux Kernel

snd snd

Audio stream

IVI Container B

Application ….
e.g.
phone

e.g.
navigation

Issue of sound architecture in container

Sharing sound devices

• ALSA dmix can provide mixing but it’s too simple.

• This can’t handle complex audio situations.

Privileged
Container

IVI Container A

Application

Cluster Container

Application

Container Runtime

Linux Kernel

snd

Audio stream

IVI Container B

Application ….
e.g.
phone

e.g.
navigation

dmix

snd

Sound architecture in container
Use Sound Server and provide sockets to the containers

• Typical Linux sound architecture

• Container Runtime approves the sockets for IVI containers sound server provides

• Location of sockets is defined in entire system (e.g. /run/cointainer/pulse).

• Sound server in a container collects the data then mix, cork, route and so on.

Privileged
Container

Sound Server

App Container
e.g. IVI container

Application

Cluster Container

Application

App Container
e.g. SDL container

Application

Container Runtime

Linux Kernel

snd Bluetooth snd

Audio stream

e.g.

socket
sockete.g.

Pulseaudio
Pipewire

Conclusion - architecture overview sound

• Container runtime approves sound device to appropriate container

• Other containers can’t access to sound device

• Sound server controls audio streams from other containers depending on
situations

• Other container can find socket to sound server if Container Runtime approves

Privileged
Container

Sound Server

App Container
e.g. IVI container

Application

Cluster Container

Application

App Container
e.g. SDL container

Application

Container Runtime

Linux Kernel

snd Bluetooth snd

Audio stream

e.g.

Topics

• Architecture overview

• Graphics

• Sound

• CAN

Architecture overview CAN

• Current Linux include various CAN network support.

• https://wiki.automotivelinux.org/_media/agl-distro/agl2018-socketcan.pdf

• Very good solutions!

https://wiki.automotivelinux.org/_media/agl-distro/agl2018-socketcan.pdf

Architecture overview CAN

• GAN_GW use for routing CAN data between the container.

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

CAN I/Fvxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

How to connect CAN Bus

• How to connect CAN Bus?

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

SPI/

SHM
vxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

CAN

Communicator

CAN Proxy

In a typical example, we will place a CAN network

management unit outside of Linux.

The CAN external unit connects to Linux with a low-

latency communication mechanism.

Cluster Service

Cluster App

CAN Proxy transfers data acquired from CAN Unit to a

virtual bus in Linux.

Cluster service and application should receive data

directly from CAN Proxy to reduce latency.

CAN
Bus

How to connect CAN Bus

• How to connect CAN Bus?

• Another case

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

can0vxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

CAN Proxy

When Linux accesses CAN-Bus directly, the

physical device (can0) is connected to

CAN_GW.

Cluster Service

Cluster App

In this case, CAN Proxy exists only to achieve common

API.

CAN
Bus

How to configure CAN_GW

• How to configure CAN_GW

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

CAN I/Fvxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

App. Manager

IVI application manager know "who need which can data".

IVI application manager request launch IVI application container

with CAN configuration.

When container manager launch to IVI application container, it set

up CAN_GW at the same time.

Container manager needs the following functions:

• Create vxcan device pair and one device into namespace.

• Set up CAN_GW for host side vxcan device.

How to abstract CAN data

• How to abstract CAN data.

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

CAN I/Fvxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

libcan-agl libcan-agl libcan-agl

App.

CAN data is abstracted by a user space library.

CAN data standard (sucn as OpenXC, ODBII) is not covered all of

CAN data. On the other hand, some functions (such as cluster

service and diagnostic functions) require non-standard CAN data.

Virtual CAN bus should not use CAN data standard.

Convert by user space library.

How to abstract CAN data

• How to abstract CAN data.

• When AGL IVI into system container.

Update

Container

(example)

Container host

Linux Kernel

AGL IVI Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem ContainerSystem Container

Application
Container

CAN I/Fvxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

low-can-binder

libcan-agl libcan-agl

AGL IVI

App.

AGL IVI

App.

If your system want to use AGL IVI.

Virtual CAN bus carry OEM specific data.

low-can-service convert from OEM specific data to own api.

It’s same of current AGL IVI.

