
Joint presentation:
Container Based Architecture for AGL

Automotive Grade Linux All Member Meeting
October 22-23, 2019

Naoto Yamaguchi
AISIN AW CO.,LTD.

Tadao Tanikawa
Panasonic Corporation

Kazumasa Mitsunari
WITZ CO.,LTD.

Today presenters

Name :
Naoto Yamaguchi

Company :
AISIN AW CO.,LTD.

Career :
Automotive platform
software engineer since
2007.

Name :
Tadao Tanikawa

Company :
Panasonic Corporation

Career :
GNU/Linux system since
1996, Embedded Linux
for mobile since 2004,
and Linux for Automotive
since 2012.

Name :
Kazumasa Mitsunari

Company :
WITZ CO.,LTD.

Career :
Automotive software
engineer since 2015

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

Instrument Cluster EG

• Motivation
• Create a base platform for instrument cluster by using Linux.

• Solve some of the product development issues in AGL community.

• Members
• Suzuki (Leader), Toyota, Honda, Mazda

• Denso, Panasonic, Continental, Bosch, Nippon Seiki

• Denso Ten, Aisin AW

EG scope and system image?

Low grade

Hi grade

IVI function

Cluster function

Hi spec

Low spec

Hi spec

Cluster centric system
=Low Spec AGL

IVI centric system
=Hi Spec AGLIC EG target

IVI(Navigation..)
＋

Cluster(HUD)
＋

Smart phone connection(SDL..)

Cluster(HUD)
＋

Smart phone connection(SDL..)

for small IVI function

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

What are the product development issues?

1. Quality and Robustness
• Functional safety is required.

• Quality management is required.

2. Lightweight
• Constraints on boot time are severe.

• Current AGL stack is heavyweight.

Functional safety

Main

function

Isolation method

Safety

function

Main function is the very function of our system

• Requires advanced quality management.
• Requires open innovation.
• Requires cyber security.
• Requires fast boot.
• Requires various functions.
• …

Safety function ensures vehicle safety

• What function does it include?
• Which OS do you use?
• Which communication method do you use?

Main function and safety function are isolated

by isolation method.
• Hardware separation? Using hypervisor?

Collaborate ELISA to find a solution.

Functional safety will be

discussed in the ELISA

Project.

Main target of IC-EG EG

Collaborate ELISA to find a solution.

What are the product development issues?

1. Quality and Robustness
• Functional safety is required.

• Collaborate with ELISA Project

• Quality management is required.

2. Lightweight
• Constraints on boot time are severe.

• Current AGL stack is heavyweight.

• Advanced quality management

• Full path coverage testing

• Formal verification

• Careful bug fixes

Puzzles in automotive quality management
• There are many puzzles in the automotive system (main function).

• Rapid innovation

• New features are added

• Short-term development

• Rapid bug fixes

IVI Instrument Cluster

Puzzle

• Various functions

• Many pre-installed applications

• Applications installed from store

• Selected functions

• Combinational verification

• Fast boot-up
Puzzle

Safety

function

Other

Container host

QM Isolation

• Our answer to the puzzle issues is “one more isolation method"
which takes one-more layer to isolate the functions by using
Linux container technology.

Isolation method (low layer)

Linux Kernel

Container runtime

Low IVI Low Cluster

Isolated by container

For fast boot-up
Miniaturized rootfs with

minimum functions.

For verification
Selected software properly tested by full-

path coverage test and formal verification.
For rapid innovation and bug fixes
Runtime environment is isolated from

other software stacks by container to

realize rapid innovation.

EG scope

Main functions are isolated according to

their QM level, booting time, incident

type, etc.

Abstract architecture

What are the product development issues?

1. Quality and Robustness
• Functional safety is required.

• Collaborate with ELISA Project

• Quality management is required.

• QM Isolation

2. Lightweight
• Constraints on boot time are severe.

• QM Isolation

• Current AGL stack is heavyweight.

Current AGL stack is too heavy weight

Target
Performance

Spec
(Spec EG)

Reference
Hardware
(R-Car E3)

Source code

Create source code according to above information

Architecture Reference Design

What are the product development issues?

1. Quality and Robustness
• Functional safety is required.

• Collaborate with ELISA Project

• Quality management is required.

• QM Isolation

2. Lightweight
• Constraints on boot time are severe.

• QM Isolation

• Current AGL stack is heavyweight.

• Determine target performance

What are the product development issues?

1. Quality and Robustness
• Functional safety is required.

• Collaborate with ELISA Project

• Quality management is required.

• QM Isolation

2. Lightweight
• Constraints on boot time are severe.

• QM Isolation

• Current AGL stack is heavyweight.

• Determine target performance

Most important keyword:

QM Isolation

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

What is QM isolation?

• "One more isolation" is a method to take one-more layer to
isolate the functions with Linux container technology.

• Why container?
• Linux container technology

• Isolate root filesystems on Linux kernel by using chroot.

• Isolates software stack in accordance with their QM level.

• Control resource (such as cpu, memory) by using cgroups.

• Guarantees the resources to instrument cluster.

• Hide resources from other containers by using namespace.

• Protects cluster resources from other functions.

IVI App ContainerIVI App Container

Container-based architecture

• Basic architecture
• Following is a breakdown of the abstract architecture:

Abstract architecture

Other

Container host

Isolation method (low layer)

Linux Kernel

Low IVI Low

Cluster

S
a

fe
ty

 fu
n

c
tio

n

Update

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Compositor

Window Manager

Sound Server

Media Server

Cluster Service

Cluster AppUpdater

Basic architecture

IVI App

System ContainerSystem Container
Application
Container

Application
Container

App. Manager

Automotive use case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• Container host
• Manages lifecycle of each container.

• To achieve fast boot-up, it needs to be lightweight.

• Static service containers (such as cluster and ivi privilege) are launched on boot-up, and
dynamic service containers (such as ivi app) are started at the request of privileged container.

• Configures the devices and communication resources.

• Controls permissions for the guest.

• Detects update completion and switches the container image.

• When a security hole (threatens container isolation) is found, it must be fixed quickly.

Automotive use case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• Cluster
• Provides cluster function

• Contains the cluster software functions such as meter drawing and fuel
calculation.

• Built with a limited software stack, and integrated by using advanced quality
management method.

• Needs a display, GPU, sound, CAN, and sensors.

• To realize the fast boot-up, this must be the 2nd section to start in the system.

Automotive use case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• IVI Privilege
• Responsible for management.

• Manages sound and graphics for guests except for cluster.

• Manages IVI applications by using container manager API.

• Capabilities, resources, etc.

• Needs a display, GPU, and sound.

Automotive use case – Role of each container

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

Cluster Service

Cluster AppUpdater

IVI App

System ContainerSystem Container
Application
Container

Application
Container

Compositor

Window Manager

Sound Server

Media Server

App. Manager

• IVI App
• Provides IVI function

• IVI applications such as silicon audio player, telephone,

and CarPlay are contained separately in the unit.

• Operates with limited resources and permissions.

• Needs graphic (with GPU), sound, CAN, IP network, and

various input and output of dynamic devices (such as

USB flash drive and SD card).

Automotive use case – Many issues

• Key Issue

• Graphics management

• How to isolate and share the graphics stacks.

• Sound management

• How to isolate and share the sound device.

• CAN network management

• How to deliver and hide CAN data.

• Other issues

• Management of dynamic devices (USB, SD card, etc.)

• IP network management

• Container management and update

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

Benefit of Linux container for GUI apps

Contradictions of products for automotive

Crush / Reset
unacceptable

↓
Keep code

simple & small
Rich functions /

Network
connection

required
↓

Keep code
fresh & healthy

Linux Container

Solution: Own runtime (chroot) for eash app
↓

Modifying code How to integrate

GUI apps: How to do for Linux container ?

Linux Kernel

DRM/KMS

Display 0 Display 1 …

Server side

Compositor
Window

Manager

Window System

Client side

Full screen

App Type B

Direct

Rendering

App Type A

Remote

Rendering

App Type C

Direct

Rendering

fbdev

OGL, libdrm

OGL, libdrm

• Server – client model

• Nothing to be changed

Clients of
window
system

• Open GLES abstracts
HW/WS dependency

• Nothing to be changed

Apps of
direct

rendering

• Depends on system
configuration

Window
system

(compositor)
Display N

Container runtime

Compositor: How to do?

Linux Kernel

DRM/KMS

Display 0 Display 1 …

Server side

Compositor
Window

Manager

Window System

Client side

Full screen

App Type B

Direct

Rendering

App Type A

Remote

Rendering

App Type C

Direct

Rendering

fbdev

OGL, libdrm

OGL, libdrm

• Nothing to be changed

Clients of
window
system

• Nothing to be changed

Apps of
direct

rendering

• Control display, uses GPU
directly via DRM/KMS

• Depends on system
configuration

Window
system

(compositor)
Display N

Container runtime

Container runtime

Output configurations: Separate and Unified

Display 1 Display 0

Compositor

APP A

Linux Kernel

App B App C APP D App E

Compositor

ICIVI

Compositors separate by container

Nested compositor inside and outside container

Transfer views from IVI to IC

Output: Separate and Unified

ICIVI

Container runtime

Display 0

Secondary Compositor

APP A

Linux Kernel

App B App C

APP D App E

Primary Compositor

Compositors separate by container

Nested compositor inside and outside container

Transfer views from IVI to IC

Challenging: Display unified Safety and Non-safety

Low level
composition

• Composition outside Linux for
Safety

• Hardware overlay is preferable

Virtualized output

• Output device should be
controlled outside Linux

Collaboration
with other
projects

• Virtualization technology (esp.
I/O virtualization, e.g. virtio)

• Functional safety

Linux Kernel
DRM/KMS

Isolation method (low layer)

Display 0

Virtual

Display

Controller

Safety Domain

Display

Driver

dma_buf GPU Driver

RAM GPU

Container runtime

Secondary Compositor

APP A App B App C

APP D App E

Primary Compositor

QM Isolation

Plane 2
Plane 1
Plane 0

virtio-gpu

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

IVI World

Requirement – cluster sound -

■ Functionality

- Simple sound. Beep, Alert, Winkers .. etc.

- Available to output mix sound

■ Spec

- Each source volumes are fixed. Must not be muted.

- Available within 200msec after startup

- Some source will be the target of ASIL-B according to system design or safety analysis

IVI Container

Cluster World

Container runtime

Cluster

Container

Linux Kernel

IVI World

Architecture – cluster sound -

Functionality is simple, but fast boot and stability are necessary

IVI

Container

Cluster World

Container runtime

Cluster

Container

Linux Kernel

snd

SoC should provide
sound device for cluster container

snd

Do not affect

Container Runtime should
provide isolation from IVI containers

- Cluster doesn’t need high functional sound server

- To improve the stability, device isolation by container(namespace) is good solution

Rapid update

Requirement – IVI sound 1/2 -

■ Functionality

- Functionality is same as current IVI system

- Audio policy management is necessary. (※)
- Active source change : automatically stop old source and play new source when user push buttons.

- Interrupt source mixing : When car close to cross road IVI system reduce the volume of current source and mix with interrupt
source e.g. Navigation Guidance.

- The device should be shared within IVI containers.(mixing/exclusive)

- Several ECUs becomes audio source/sink

• https://wiki.automotivelinux.org/eg-ui-graphics-req-audiorouting

• https://wiki.automotivelinux.org/eg-ui-graphics-req-multimedia

• https://wiki.automotivelinux.org/_media/agl_amm_2017_presentation_nishiguchi_a04.pdf

IVI World

IVI Container

Cluster World

Container runtime

Cluster

Container

Other
ECU

Other
ECU

(e.g. DSP)

Kernel

sndsnd

https://wiki.automotivelinux.org/eg-ui-graphics-req-audiorouting
https://wiki.automotivelinux.org/eg-ui-graphics-req-multimedia
https://wiki.automotivelinux.org/_media/agl_amm_2017_presentation_nishiguchi_a04.pdf

Requirement – IVI sound 2/2 -

■ Functionality

- Launch/Stop container dynamically

Usecase example

- User plug smartphone using USB cable

- Start Smartphone link application container automatically

IVI world

IVI Container

Cluster world

Container runtime

Cluster

Container

Kernel

sndsnd

Stand alone

Container

Launch/Stop

IVI Containers

Architecture – IVI sound -

Cluster Container

Cluster app

Container Runtime

Linux Kernel

snd snd

System Container

Sound

Manager

Isolate device from

IVI by container

runtime

App

Sound

Server

e.g.
- Genivi Audio Manager
- Session Manager

e.g.
- pulseaudio
- pipewire
- proprietary

- Output/Input sound
through sockets (IPC)
- Audio Role is passed

Cluster

service

Will explain next slide

control stream

Other
ECU

(e.g. tuner)

- Fast boot
- Avoid influence of IVI

Other
ECU

(e.g. DSP)

Bluetooth

Amplifier

Some system have

external ECU outside

Cluster integrated ECU

- Control audio
according to the policy
engine with audio role

App

SDL

Architecture – IVI audio management -

• Audio focus (Sound Right)

Radio Ringing
Phone

Call
Radio

tr
a

n
s
it
io

n

W
in

d
o

w
S

o
u
n
d

Focus on phone app
Focus on
Radio

Focus on
Radio

00:20
Genivi

Audio

Manager

pulseaudio

Plugin: module-

router

IVI apps

IVI container

Connect/Disconnect

Audio Stream

App
State Machine

System Container

Container runtime

- Control audio
according to the policy
engine with audio role

Notification
State change

Conclusion of audio architecture

• Cluster Container will have isolated device by container runtime

• To share the sound device within IVI containers, use sound server in system container

• IVI container architecture is compatible with current IVI sound architecture.

IVI World Cluster World

Container runtime

Cluster

Container

snd snd

Kernel

System

Container

IVI

Container
IVI

Container
IVI

Container

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

Architecture overview of CAN
• Currently, Linux can support various CAN network-related functions.

• https://wiki.automotivelinux.org/_media/agl-distro/agl2018-socketcan.pdf

• Very good solutions!

https://wiki.automotivelinux.org/_media/agl-distro/agl2018-socketcan.pdf

Architecture overview CAN

• CAN_GW and vxcan are used for routing CAN data between
containers.

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

CAN I/Fvxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

How to connect CAN bus

• How CAN bus is connected?

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

SPI/

SHM
vxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

CAN

Communicator

CAN

Proxy

Typically, management unit of CAN network is

placed outside of Linux.

CAN communicator is connected to Linux by using

a low-latency communication mechanism.

Cluster Service

Cluster App

CAN Proxy transfers data acquired from CAN

communicator to a virtual bus in Linux.

Cluster service and application should receive data

directly from CAN Proxy to reduce latency.

CAN proxy is implemented as Socket CAN driver.

CAN
Bus

This architecture focuses on generality for
current Linux environment.
Typical can communicator is using
AUTOSAR. We think need to discuss
how to connect to AUTOSAR.

How to abstract CAN data

• How to abstract CAN data.

IVI App ContainerIVI App ContainerUpdate

Container

(example)

Container host

Linux Kernel

IVI App Container Cluster ContainerIVI Privilege Container

Container runtime Container Manager

…

CAN architecture

System ContainerSystem Container
Application
Container

Application
Container

CAN I/Fvxcan

vxcan

vxcan

vxcan

vxcan vxcan vxcan

vxcan

CAN_GW

libcan-agl libcan-agl

App.

CAN data is abstracted by a user space library.

CAN standard data (such as OpenXC and OBD-II) do

not cover all CAN data. On the other hand, some

functions such as cluster service and diagnostic

functions require non-standard CAN data.

Virtual CAN bus should not use CAN standard data.

Conversion is implemented in user space library.

Conclusion of CAN architecture

• Summary of CAN
• CAN architecture is based on Linux socket CAN.

• CAN_GW and vxcan are used for routing CAN data between
containers.

• We think management unit of CAN network is placed outside of
Linux.

• Conversion of CAN standard data is implemented in user space
library.

• Future agenda
• Typical can communicator is using AUTOSAR. We think need to

discuss how to connect to AUTOSAR.

45

Outline

• Instrument Cluster EG

• Concept

• Container Based Architecture
• Overview

• Key technology : Graphics

• Key technology : Sound

• Key technology : CAN

• Conclusion

• Q&A

Conclusion

• Summary of our presentation
• In this presentation, we described the concept and software

architecture of AGL Instrument Cluster EG.

• Mr. Tanikawa showed the graphics architecture. It's based on nested
compositor concept.

• Mr. Mitunari explained about the sound architecture, which is highly-
compatible with current AGL sound architecture.

• Lastly, we set forth the issues of CAN architecture and other areas.

• Future agenda
• We will present other issues such as dynamic device, IP network, and

container manager in next AMM .

• For the current status, please visit the following link:
• https://confluence.automotivelinux.org/display/IC/Instrument+Cluster+Home

47

https://confluence.automotivelinux.org/display/IC/Instrument+Cluster+Home

