
Virt-EG Virtual F2F SAT
June 16, 2021

Agenda

2

- Agenda

- [VirtIO in Virtualization] Virt-EG Work for AGL LL 40 min

- [VirtIO in Virt/Non-virt AGL] Device Common I/F 20 min

Future Steps

VirtIO driver I/F

VirtIO Front End Device Driver Physical Device Driver

Kernel

Userspace

Use VirtIO driver I/F as lower
I/F makes userspace

Implementation (such as IVI
PR, IC) independent from
lower level device driver

implementation!
IVI PR / IC / Telematics

Virt-EG Scope SAT Scope
SAT/ Profile-

Specified EG’s Scope

First Step is to identify the devices

necessary and important for AGL

and assign priority!

We would like to lead the whole

activity and work together with

SAT, IVI-EG, IC-EG and etc..

Showed in previous F2F
SAT meeting in Mar

Concept

VirtIO driver I/F

VirtIO Front End
Device Driver

Physical
Device Driver

Kernel

Userspace

IVI PR
/IC

/Telematics

For most of devices, Linux Device
Subsystem are used as the virtio

driver I/F to the userspace.

AGL

Application

Linux Device Subsystem

SoC Device

Virtio-xxx
Frontend

Driver

SoC 1
DDSoC N
Device
Driver

Device
tree

Kernel

Userspace

Using the Linux Device Subsystem
will allow userspace to have one
unique interface no matter in
native or virtual platform.
HW dependency will be absorbed
under the Linux Device Subsystem

Device driver
interchangeability in
- SoC A SoC B … in

native AGL
- Virt AGL Native AGL
by simple configuration
change in device tree

Kernel Level Common Device I/F

5

• VirtIO utilize the standard Linux Device Subsystem to provide unique interface to userspace

independent from HW. (Linux Device Subsystem can be seen as VirtIO driver I/F to userspace)

• Benefiting from the VirtIO standardization, Linux subsystem is also growing to a more mature

common interface that different vendors can take advantage of it.

• Same idea can be applied to native case to absorb HW difference under Linux Device Subsystem

and use common user-kernel interface.

Block Device

Standard & Mature

Input Device

Standard but Need Extension for

Automotive Production Use Case

RPMB Device

Under standardization

How we achieve HAL?

6

App

Vendor User Lib

Linux SubSystem

user

kernel

Vendor Device Driver

Native

Case 2: Device with usespace Vendor Lib (e.g. GPU, Video Codec, Camera)

App

Common VirtIO Lib

Linux SubSystem

user

kernel

VirtIO Frontend Driver

Virtual

Hypervisor

Vendor User Lib

Linux Subsystem

Vendor Device Driver

VirtIO Backend Service

Frontend VM

App

Vendor User Lib

Linux Subsystem

user

kernel

Vendor Device Driver

HAL

Linux Subsystem

VirtIO Frontend Driver

Native

Define common HAL in
userspace

Case 1: Device without usespace Vendor Lib (e.g. Block, Input, RPMB)

App

Linux SubSystem

Vendor Device Driver

Native

Common User Lib

Native Virtual

App

Linux Kernel Subsystem

user

kernel

Vendor Device Driver

Common User Lib

VirtIO Frontend Driver

Take advantage of existing Linux
kernel subsystem, extend it to

automotive use and define it as
the common kernel-user device

I/F (serve as HAL) Common VirtIO Lib

Our Focus

AGL Priority

7

https://docs.google.com/spreadsheets/d/1jpLNUBKz19LOdtGyqan5Wk4OgZFFxUNcSpMrFMPFCKI/

Device VirtIO Device Linux Kernel Version OASIS Specification Linux Kernel Device Subsystem Total Score AGL Overall Priority

Input Device (e.g. touch) virtio-input v4.0-rc4 v1.1 evdev (Input Subsystem) 29 1

Display (Video Display Controller) virtio-gpu(2d) v4.1-rc4 (2d) v1.1 DRM & KMS 27 2

GPU virtio-gpu(3d) v4.3-rc5 (3d) v1.2 DRM & KMS 26 3

CAN bus virtio-can -
Spec RFC in virtio-
comment ML socket CAN 20 4

Block Device virtio-blk v2.6.23 v1.0 block subsystem (/dev/block) 19 5

Audio (microphone & speaker) virtio-snd v5.13 v1.2 ALSA 18 6

Ethernet virtio-net v2.6.23 v1.0 network subsystem 11 7

Bluetooth virtio-bluetooth - -
Bluetooth subsystem (vitrio-bt has
HCI IF) 9 8

SPI virtio-console v.2.6.23 v1.0 SPI subsystem 8 9

Serial console virtio-console v.2.6.23 v1.0 tty/serial interface 8 9

SCMI (Sensors, Clocks/Regulators,
Performace ...) virtio-scmi

Upstreamed but under
review (RFC v2) v1.2

no specific interface to userspace at
the moment (maybe can linked to
industrial IO) 8 9

https://docs.google.com/spreadsheets/d/1jpLNUBKz19LOdtGyqan5Wk4OgZFFxUNcSpMrFMPFCKI/

Block Device

8

AGL

Application

Physical Device

Driver A

/dev/block/xxxxx
User

Kernel Block Subsystem

Virtio-Block

Front End Driver

Generic Block Layer

VFS/Filesystem

Physical Device

Driver BPhysical Device

Driver C

VirtualizationNative

• Mature Standard Linux Block Subsystem are

commonly used by virtualization world and

native world without hardware dependency.

• Data read/write/trim operation enabled by

block subsystem have already covered basic

use cases in automotive

• With the existing I/F, abstraction of hardware

has been already achieved and few work

need to be done.IO Scheduler

Input Device

9

AGL

Application

Physical Device

Driver A

/dev/input/eventX
User

Kernel
Input Subsystem

Virtio-Input

Front End Driver

Input core

Input event handler

Physical Device

Driver BPhysical Device

Driver C

VirtualizationNative

• Standard “evdev” generic input event interface

• passed events generated in kernel straight to

the program with same event codes on all

architectures and HW-independent.

• Additional Extension is needed for automotive use

• Multi-touch protocol has been supported in

input subsystem but extension of virtio-input

front end is needed (planned in Virt-EG

activities).

• Current input subsystem doesn’t cover the

calibration/sensitivity setting and need to be

extended to support the use case.

RPMB Device

10

• What is RPMB
• RPMB is Replay Protected Memory Block
• A write protected region on certain flash devices such as eMMC and UFS.
• Fixed size partition (128KB ~ 16MB) with counter and can only be accessed

by Trustzone

• Use Case: Anti roll-back and replay attack protection
• Protect from downgrading software
• Protect from unauthorized device unlocking (times of attempts to unlock

is recorded in RPMB)
• Secure boot (partitions write protection)

RPMB Device

11

AGL

Application

Physical Device

Driver A

/dev/rpmbX
User

Kernel

RPMB Subsystem

VirtIO-RPMB

Front End DriverPhysical Device

Driver BPhysical Device

Driver C

VirtualizationNative

• Fragmented I/F for rpmb

• MMC: MMC_IOC_CMD ioctl

• UFS: SG_IO ioctl

• Along with standardization of VirtIO-

RPMB, standardization of Linux

RPMB subsystem is progressing

• Common RPMB subsystem

with one ioctl (+simulator)

/dev/rpmbX

• Apply the same RPMB subsystem

to native case will help the device

abstraction in the way that one

unique interface is used from

userspace

