4 I

AUTOMOTIVE  Virt-EG Virtual F2F SAT

June 16, 2021

OOOOOOOOOO



Agenda

- Agenda

- [VirtlO In Virtualization] Virt-EG Work for AGL LL 40 min

- [VirtlO in Virt/Non-virt AGL] Device Common |/F 20 min
m THE

AUTOMOTIVE LINUX

GRADELINUX . T FOUNDATION



Future Steps

First Step is to identify the devices
necessary and important for AGL

Showed in previous F2F
SAT meeting in Mar

and assign priority! Use VirtlO driver I/F as lower
|/F makes userspace
We would like to lead the whole |mp|em€{ntati0n (such as IVI
activity and work together with PR, IC) independent from
SAT, IVI-EG, IC-EG and etc.. IVI PR / IC / Telematics lower level device driver
implementation!
Userspace
: F 4

VirtlO Front End Device Driver 0 Physical Device Driver

1
AUTOMATIVE L I !?)Iuhlmlﬁ{%

GRADE LINUX



IVI PR

Jile
/Telematics

Userspace

ACUCIN  \irt0 driver I/F

VirtlO Front End

Device Driver

Concept

For most of devices, Linux Device
Subsystem are used as the virtio
driver I/F to the userspace.

Application

—

Kernel

Physical

Device Driver

D)

AUTOMOTIVE
GRADE LINUX

Using the Linux Device Subsystem
will allow userspace to have one
unique interface no matter in
native or virtual platform.

HW dependency will be absorbed
under the Linux Device Subsystem

Userspace _

Linux Device Subsystem

Virtio-xxx
SaC 1
Frontend \\ §0C N
Driver Device

SoCl Device ||

Device driver

interchangeability in

- SoCA& SoCB % ...in
native AGL

- Virt AGL < Native AGL

by simple configuration

change in device tree

Device
tree



Kernel Level Common Device I/F

« VirtlO utilize the standard Linux Device Subsystem to provide unique interface to userspace

independent from HW. (Linux Device Subsystem can be seen as VirtlO driver I/F to userspace)
« Benefiting from the VirtlO standardization, Linux subsystem is also growing to a more mature

common interface that different vendors can take advantage of it.

« Same idea can be applied to native case to absorb HW difference under Linux Device Subsystem
and use common user-kernel interface.

Block Device

Standard & Mature

User

Application

i

/dev/block/xxxxx

Kernel

Block Subsystem

VFS/Filesystem

Generic Block Layer

10 Scheduler

[ Physical Device Virtio-Block
[ Physical Device Front End Driver
Physical Device
m Driver C
~
- - Native Virtualization
AUTOMOTIVE
GRADE

Input Device

Standard but Need Extension for
Automotive Production Use Case

Application |

User ‘

/dev/input/eventX

Kernel

Input Subsystem

Input event handler |

|

Input core |

| Physical Device Virtio-Input

| Physical Device Front End Driver |

Physical Device

Driver C

Native

Virtualization

RPMB Device

Under standardization

| Application

User

/devirpmbX

Kernel

RPMB Subsystem

| Physical Device VirtlO-RPMB
| Physical Device Front End Driver

Physical Device
Driver C

Native Virtualization I



How we achieve HAL?

Case 1: Device without usespace Vendor Lib (e.g. Block, Input, RPMB)
Native

App

Common User Lib

Linux SubSystem

Vendor Device Driver

Take advantage of existing Linux
kernel subsystem, extend it to
automotive use and define it as
kernel the common kernel-user device

Common User Lib
user

Linux Kernel Subsystem I/E (serve as HAL)

Vendor Device Driver VirtlO Frontend Driver

Virtual
I
A Our Focus
AUTOI:VL'.ITIVE
GRADE LINUX

Case 2: Device with usespace Vendor Lib (e.g. GPU, Video Codec, Camera)
Native Frontend VM

user Common VirtlO Lib

IS Linux SubSystem WG| Linux SubSystem
VirtlO Frontend Driver

HAL

VirtlO Backend Service

App

Vendor User Lib Vendor User Lib

user

Linux Subsystem

Vendor Device Driver Vendor Device Driver

Define common HAL in
userspace

Vendor User Lib Common VirtlO Lib

Linux Subsystem

user

kernel Linux Subsystem
Vendor Device Driver

VirtlO Frontend Driver

Native Virtual



AGL Priority

https://docs.qgoogle.com/spreadsheets/d/1jpLNUBKZz19L OdtGyqan5Wk40OgZFFEXUNcSpMrEMPECKI/

Device

Input Device (e.g. touch)

Display (Video Display Controller)
GPU

CAN bus

Block Device

Audio (microphone & speaker)
Ethernet

Bluetooth

SPI

Serial console

SCMI (Sensors, Clocks/Regulators,
Performace ...)

VirtlO Device
virtio-input
virtio-gpu(2d)
virtio-gpu(3d)
virtio-can
virtio-blk
virtio-snd
virtio-net
virtio-bluetooth
virtio-console

virtio-console

virtio-scmi

Linux Kernel Version
v4.0-rc4
v4.1-rc4 (2d)

v4.3-rc5 (3d)

v2.6.23
v5.13
v2.6.23

v.2.6.23

v.2.6.23

Upstreamed but under
review (RFC v2)

OASIS Specification Linux Kernel Device Subsystem

vl1.l
vl.l
v1.2
Spec RFC in virtio-

comment ML

v1.0
vl1.2
v1.0

v1.0

v1.0

vl1.2

29
DRM & KMS 27
DRM & KMS 26

20

ALSA

19
18
11
Bluetooth subsystem (vitrio-bt has
HCI IF) 9

SPI subsystem

no specific interface to userspace at
the moment (maybe can linked to
industrial 10) 8

Total Score AGL Overall Priority

~ aEEn

ArotaTve TJLINUX

GRADE LINUX


https://docs.google.com/spreadsheets/d/1jpLNUBKz19LOdtGyqan5Wk4OgZFFxUNcSpMrFMPFCKI/

Block Device

Application

« Mature Standard Linux Block Subsystem are

| commonly used by virtualization world and

User native world without hardware dependency.
<ermnel /dev/block/xxxxx +  Data read/write/trim operation enabled by
Block Subsystem block subsystem have already covered basic
VFS/Filesystem use cases in automotive
. « With the existing I/F, abstraction of hardware
Generic Block Layer )
has been already achieved and few work
|0 Scheduler need to be done.
Physical Device Virtio-Block
Physical Device Front End Driver
Physical Device
Driver C
Native Virtualization

AUTOMOTIVE
GRADE



Input Device

Application

« Standard “evdeVv” generic input event interface

. passed events generated in kernel straight to

User ) the program with same event codes on all
/dev/input/eventX : :
Kernel architectures and HW-independent.
Input Subsystem « Additional Extension is needed for automotive use
Input event handler *  Multi-touch protocol has been supported in
input subsystem but extension of virtio-input
Input core front end is needed (planned in Virt-EG
activities).
*  Current input subsystem doesn’t cover the
_ _ 3 calibration/sensitivity setting and need to be
Physical Device Virtio-Input extended to support the use case.
Physical Device Front End Driver
Physical Device
Driver C
Native Virtualization

L TJLINUX

AUTOMOTIVE
GRADE



AUTOMOTIVE
GRADE

RPMB Device

* What is RPMB
e RPMB is Replay Protected Memory Block
* A write protected region on certain flash devices such as eMMC and UFS.
* Fixed size partition (128KB ~ 16MB) with counter and can only be accessed

by Trustzone

e Use Case: Anti roll-back and replay attack protection
* Protect from downgrading software
* Protect from unauthorized device unlocking (times of attempts to unlock
is recorded in RPMB)
e Secure boot (partitions write protection)



RPMB Device

Application

« Fragmented I/F for rpmb
| « MMC: MMC I10C_CMD iocitl
« UFS: SG IO ioctl
« Along with standardization of VirtlO-
RPMB, standardization of Linux
RPMB Subsystem RPMB subsystem is progressing
« Common RPMB subsystem
with one ioctl (+simulator)
/devirpmbX
* Apply the same RPMB subsystem
Physical Device S to native case will help the device

User

/dev/rpmbX

Kernel

Physical Device VirtlO-RPMB

Physical Device abstraction in the way that one
Driver C unique interface is used from

userspace
Native Virtualization

AUTOMOTIVE
GRADE



