
AGL Layer Design - Rethink

Tadao Tanikawa @ AGL Developer Community

Basically, I agree with

1

Page No.4 of https://wiki.automotivelinux.org/_media/agl-distro/notes_on_production_ready_ivi_proposal.pdf

Originally, it was very simple

2

• Orange boxes are included in AGL Distribution

• AGL Demo Platform is a reference implementation of AGL

• For OEM products, own framework or proprietary software

are embedded to own meta-layers (e.g. meta-oem-

distro/meta-oem-middleware)

Proposed layers are similar to this

Slide created at 2015/06/22

• Goal: reducing cost of delivering OSS to products

• What is major issues?

• Functionality

• Quality

• GAP from functionality point of view

• Missing features for automotive use cases

• Missing functions to implements those missing features.

• To fill these gaps, roughly 2 ways

• Extend existing software → Re-use existing OSS and modify it

• Develop new software → Create OSS projects inside/outside AGL UCB

A study: What is product readiness of AGL?

3

Basic software integration architecture

4

Platform software

(system services/daemons)

Application framework

(application services/managers)

Application programs

Software stack Software structure

Own program code

Dependencies

OSS libraries/frameworks/stacks

Proprietary libraries/frameworks/stacks

Linux kernel / device drivers

Defined by AGL layers

Defined by AGL (bitbake) recipes
Selected by AGL features

Today’s AGL layers, meta-agl-xxx

5

.
├── bsp
├── build
├── external
├── meta-agl
├── meta-agl-cluster-demo
├── meta-agl-demo
├── meta-agl-devel
├── meta-agl-extra
└── meta-agl-telematics-demo

.
├── meta-agl
├── meta-agl-bsp
├── meta-agl-distro
├── meta-agl-profile-cluster
├── meta-agl-profile-cluster-qt5
├── meta-agl-profile-core
├── meta-agl-profile-graphical
├── meta-agl-profile-graphical-html5
├── meta-agl-profile-graphical-qt5
├── meta-agl-profile-hud
├── meta-agl-profile-telematics
├── meta-app-framework
├── meta-netboot
├── meta-pipewire
├── meta-security

Difficult to understand

Today’s AGL features

6

Available features:
[meta-agl]

agl-all-features :(agl-demo agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-pipewire agl-speech-framework agl-netboot)
agl-appfw-smack
agl-archiver
agl-buildstats
agl-ci
agl-ci-change-features :(agl-demo agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-pipewire agl-speech-framework agl-devel agl-netboot agl-pipewire agl-buildstats agl-ptest)
agl-ci-change-features-nogfx :(agl-demo agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-pipewire agl-speech-framework agl-devel agl-netboot agl-pipewire agl-buildstats agl-ptest)
agl-ci-snapshot-features :(agl-demo agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-pipewire agl-speech-framework agl-devel agl-netboot agl-archiver agl-pipewire agl-buildstats agl-ptest)
agl-ci-snapshot-features-nogfx :(agl-demo agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-pipewire agl-speech-framework agl-devel agl-netboot agl-archiver agl-pipewire agl-buildstats agl-ptest)
agl-devel
agl-egvirt
agl-fossdriver
agl-gplv2
agl-hmi-framework
agl-netboot
agl-pipewire
agl-profile-cluster :(agl-profile-graphical)
agl-profile-cluster-qt5 :(agl-profile-graphical-qt5 agl-profile-graphical)
agl-profile-graphical
agl-profile-graphical-html5 :(agl-profile-graphical)
agl-profile-graphical-qt5 :(agl-profile-graphical)
agl-profile-hud
agl-profile-telematics
agl-ptest
agl-sign-wgts
agl-sota
agl-virt
agl-virt-guest-xen
agl-virt-xen :(agl-virt)
agl-weston-remoting :(agl-profile-graphical)

[meta-agl-cluster-demo]
agl-cluster-demo :(agl-profile-cluster-qt5 agl-profile-graphical-qt5 agl-profile-graphical agl-hmi-framework)
agl-cluster-demo-preload

[meta-agl-demo]
agl-cloudproxy
agl-cluster-demo-support :(agl-weston-remoting agl-profile-graphical)
agl-demo :(agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-pipewire agl-speech-framework)
agl-demo-preload
agl-demo-soundmanager :(agl-appfw-smack agl-hmi-framework agl-profile-graphical-qt5 agl-profile-graphical agl-audio-soundmanager-framework)

[meta-agl-devel]
agl-jailhouse
agl-speech-framework
agl-voiceagent-alexa :(agl-speech-framework)
agl-voiceagent-alexa-wakeword :(agl-voiceagent-alexa agl-speech-framework)

[meta-agl-extra]
agl-localdev

[meta-agl-telematics-demo]
agl-telematics-demo :(agl-profile-telematics)

Difficult to understand

• IVI ProductReady Trial
• Re-use existing AGL UCB (means keeping Today’s layers)
• Adding RBA from DENSO

• Adding BaseSystem’s components from TOYOTA

• Adding Test applications/services to evaluate several features (e.g. basesystem
components/RBA/…)

• 1st Release
• Improve / Relace exising AGL components (Assuming new design)
• AppFw?

• App Services? (e.g. BT / Radio)

• …

Goals of integration of IVI ProductReady Trial/1st release

7

• All new components are integrated into meta-agl-devel once
• After new layers come, migrates all recipes of IVI in meta-agl-devel to proper layers (e.g. meta-agl-ivi and OEM layer)

How to integration of Trial

8

.
└── meta-agl-devel

├── meta-agl-denso
│ └── recipes-xxx
└── meta-agl-toyota

├── recipes-xxx
├── recipes-yyy
└── recipes-zzz

meta-agl-devel

Trial 1st Release

How to integration of Trial (cont.)

• Issues still remain: how to add AGL features for new components

Available features:
[meta-agl]

ns-backupmanager
ns-commonlibrary
ns-frameworkunified
ns-loglibrary
ns-notificationpersistent
os-eventlibrary
os-posixbasedos001legacylibrary
os-rpclibrary
os-vehicleparameterlibrary
ps-communication
ss-config
ss-interfaceunified
ss-loggerservice
ss-powerservice
ss-resourcemanager
ss-romaccesslibrary
ss-systemmanager
ss-taskmanager
ss-versionlibrary
vs-positioning
vs-positioningbaselibrary

E.g. today’s basesystem in staging

Too complicated (too detailed)

Need to organize into
Dependency of packages (recipes)and
AGL Features (templates)

• Today’s staging/toyota.git has lots of issues if followed current meta-agl’s rule
and policy of integration

• All recipes merged into meta-agl already and commit whole recipes by 1 supermassive commit (not
broken down into patches for individual elements/components)

• Unclear integration policy for AGL AppFw non-compatible sevices

• File structure of the repcies that violate the unspoken rule (e.g. complete source code files should not be
included)

• Packages of unknown purpose (e.g. kernel-module-evklib)

• Non-HMI/GUI related packages are included into recipe-graphics

• Multiple elements combined into 1 massive recipe (e.g. recipes-core/agl-systemd)

• Unclear rule/policy of the choise between replacement and expansion existing packages (e.g. recipes-
core/agl-basefiles)

• And so on

• If ignoring these issues at Trial period, it would be a bigger challenge in the nest
1st Release
• E.g. When plan to move from an OEM-specific layer (meta-agl-devel/meta-agl-toyota) to a

more generic meta-agl-ivi.

Reworking: staging/toyota.git

10

• Plan A
• Trial Period

• Keep the current recipes of staging/toyota as it is and integrate it into meta-agl-devel/meta-agl-toyota

• 1st Release
• Reorganize the package structure and recipes, carefully reintegrate them one by one into meta-agl-toyota and meta-agl-ivi

• Pros
• The amount of development during the Trial Period is minimal

• Cons
• Lots of work put off to the 1st Release

• Plan B
• Trail Period

• Reorganize the package structure and recipes, integrate them into meta-agl-devel/meta-agl-toyota once

• 1st Release
• Discuss and review whether it is appropriate to integrate into meta-agl-toyota or meta-agl-ivi for each package

• Pros
• As OSS development methodology, Plan B is better because we can focus on discussion and review for the 1st Release

• Cons
• The amount of development during the Trial Period would be huge

Reworking: staging/toyota.git (cont.)

11

The choice is up to Toyota, because the AGL developers can only respond to reviews and, due to resource,
can’t really help with refactoring and development recipes (which Toyota should do voluntarily)

2020/7-9 2020/10 - 12 2021/1 - 3 2021/4 - 6 2021/7-9 2021/10-12 2022/1-3

How to align with UCB Release

12

Kooky Koi

Trial 1st Release

LL

MM

Q1. Integratoin base: which
version? JJ or KK?

Q3. Which version will be based?
LL? MM?

Development process (recommend)
1. In-house development, use OEM specific layer (optional)
2. Develop (or migrate from OEM specific layer) into meta-agl-devel, then

migrate meta-agl-xxx if possible

Q2. Reuse trial period as a starting
point?

• CES2020 container integration demo

Sample integration how to use meta-agl-devel

13

Manifest branch: refs/tags/halibut/8.0.3
Manifest merge branch: refs/heads/halibut
Manifest groups: all,-notdefault

Projects Overview
meta-agl
* sandbox/ruke47/ces2020_803 (3 commits, Tue Jan 7 02:07:11 2020 +0900)

- 320f3744 [RCAR] Update graphics driver
- 5e20dda4 weston: Disable wayland backend frame
- 576d49b3 Fix wayland-backend bug with more than 2 outputs

meta-agl-demo
* sandbox/ruke47/ces2020_803 (1 commit, Wed Dec 25 21:15:32 2019 +0900)

- 2c41a10f agl-container-demo: split recipe of sllin driver and service

meta-agl-devel
* sandbox/ruke47/ces2020_803 (24 commits, Thu Jan 30 12:06:54 2020 +0900)

- 34fdd427 agl-container: initial import into meta-agl-devel
- 1c617a7e agl-container: base config of LXC container
- 7247ea0d agl-container: new packagegroup for agl-container-host
- f5c9474c agl-container: new packagegroup for agl-container-lxc-guest
- 9b097f00 agl-container: backport lxc 3.2.1
- 6ea7578d agl-container-demo: initial import into meta-agl-devel
- caa01996 agl-container-demo: new host image of agl container demo
- 9e669054 agl-container-demo: config of guest's rootfs
- 051d0598 agl-container-demo: setup lxc-net for host
- 04c91ec2 agl-container-demo: setup wayland compositor of host
- 2bc01410 agl-container-demo: lxc-net would fail if run before eth0 up
- 971580b1 agl-container-demo: enable LIN, Radio and Audio
- 25401314 agl-container-demo: enable gstrecord on container
- 393e88c0 agl-container-demo: agl-demo-platform for lxc container
- dd5adcc3 agl-container-demo: config of IVI demo container
- 84275562 agl-container-demo: setup child weston for guest IVI
- 73bc477b agl-container-demo: agl-cluster-demo-platform for LXC container
- 166b7414 agl-container-demo: config of IC demo container
- 97a321c7 agl-container-demo: setup child weston for guest IC
- 541cb025 agl-container-demo: enable Radio of Kingfisher
- 89ecdcfe agl-container-demo: [HACK] most/unicens (host)
- 12bf2345 agl-container-demo: simple container manager, lxc-launcher
- 74829e2c agl-container-demo: support demo of rebooting container/system

Only bug fixes for CES2020 demo use case

All new features and components are added here

Sample integration how to use meta-agl-devel (cont.)

14

• meta-agl-devel for CES2020 container integration demo

meta-agl-devel
├── meta-agl-container
│ ├── meta-container-guest
│ │ ├── recipes-config
│ │ ├── recipes-core
│ │ └── recipes-platform
│ ├── meta-container-host
│ │ └── recipes-platform
│ └── meta-virtualization
│ └── recipes-containers
├── meta-agl-container-demo
│ ├── meta-container-host
│ │ ├── recipes-config
│ │ ├── recipes-connectivity
│ │ ├── recipes-containers
│ │ ├── recipes-graphics
│ │ ├── recipes-platform
│ │ └── recipes-support
│ ├── meta-container-ic
│ │ ├── recipes-config
│ │ ├── recipes-core
│ │ ├── recipes-graphics
│ │ └── recipes-platform
│ ├── meta-container-ivi
│ │ ├── recipes-config
│ │ ├── recipes-containers
│ │ ├── recipes-core
│ │ ├── recipes-graphics
│ │ └── recipes-platform
│ └── meta-container-others

└── templates
└── feature

├── agl-container
├── agl-container-demo
├── agl-container-demo-host
├── agl-container-demo-ic
├── agl-container-demo-ivi
├── agl-container-demo-others
├── agl-container-guest
├── agl-container-host
├── agl-container-lxc

15

Thank you

