
IVI-EG 03

21.Jan.2021

Table of contents

• Overall Update
• discussion plan
• contribution status and review comment

• Basesystem HAL follow-up
• What is HAL? Why is HAL needed?
• Signal handling overview
• HAL Example 1: Positioning HAL
• HAL Example 2: CAN HAL
• CAN HAL API
• Typical use cases

• Send CAN data

• Plan (Idea) for Production Readiness

■Plan

date Discussion Topics

1 Dec. 8, 2020 Kickoff, LifecycleManagement,

2 Jan. 7, 2021 LifecycleManagement, HelathMonitoring, + “HAL”, Yocto Recipe Commit

3 Jan. 21, 2021 HelathMonitoring, PowerManagement, Commit Review, HAL(CAN)

4 Feb. 4, 2021 PowerManagement, +(Quick introduction to TestFW from Jan-Simon)

5 Feb. 18, 2021 TBD

…

TBD

(within trial)

Agl TestFW adoption

Error Management / Logger service

DEMO/Presentation for AMM

Discussion Plan (minor update)

■No other update.

• 25646-25652 review has been done without explaining HAL API.
• 25653-25654 review hasn’t been done yet.

• https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/25653
• https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/25654

About Commit Review

https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/25653
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/25654

5What is HAL?

Basesystem

CAN_HAL POSITIONING_HAL BSP Renesas
BSP

raspberry pi

CAN HW

A

CAN HW

B
GPS/Gyro HW A GPS/Gyro HW B SoC Renesas SoC Raspberry pi

Software

Hardware

On boardPeripheral devices

HAL:

boot, can, clock, deck, input, nv, positioning, power, security, soc_temperature,

usb, vehicle, video_in

1. What is basesystem “HAL”?

a. Abstracted programming interfaces when basesystem access to hardware resources

b. Sample implementations and stubs are included in currently disclosed basesystem.git

2. What is the difference between BSP and HAL?
a. BSP is for SoC.

b. HAL is mainly for Peripheral devices.

1. Why is HAL needed?
a. By implementing HAL, various devices can be supported without changing basesystem and upper

services.

b. Application can be developed and tested before Hardware is prepared

c. Multiple teams (suppliers) can develop different layers independently.

1. How did you define the boundary surfaces and I/Fs?

a. Common functionality vs HW specific

b. Historical and organizational reason. Not architecturally optimized.

Why is HAL needed for the product?

Basesystem

CAN_HAL POSITIONING_HAL

CAN HW

A

CAN HW

B

GPS/Gyro

HW A

GPS/Gyro

HW B

Developed by

basesystem team

Developed by

other teams

...

...

Signal handling overview

Communication

CAN HAL

service #1

App #1 App #2

high level msg/api

ex. average speed, lockout

...

AVCLAN

HAL

Devices

Positioning

Gyro

App #3

Pos HAL

GPS

vehicle

service #2

...

...

LANCAN ...

...HALs

Services

(basesystem)

Services

low level msg/api

ex. speed, brake

Device ctrl msg/api

ex. open, close, send

Signal handling with basesystem IVI-profile

Disclosed

Not disclosed

basesystem

Device specific operation

HAL Examples 1: Positioning HAL

• Positioning HAL is the HAL which supports following features
• Receive data from GPS chips and analyze, and provide GPS

data to UI.
• Receive Gyro sensor data from each devices

and provide them to UI.

• The functions detail
• Receive GPS data from GPS chips and provide the data

• Provide position information (longitude, latitude, altitude, GPS time,
direction etc.)

• Set GPS time

• Request GPS chips reset

• GPS receive error

• Notify GPS week counter

• Provide raw GPS time

• Provide Information about Gyro Sensor

Positioning

Positioning HAL

Positioning HAL Software block diagram

Vehicle service

HW(GPS/Gyro)

Positioning

base library

HAL Examples 2: CAN HAL

• CAN_HAL is the HAL which supports implementation
of CAN protocol stack.

• By receiving a request from “Communication” which is
one of Basesystem units, it sends the CAN data to
the upper layer.

• These are CAN_HALfunctions.
• Initialize and finalize each communication path

• Send CAN frame, get the status and send it back
to the sender(communication)

• Receive CAN frame from the CAN device

• Get CAN micon version

Communication

CAN HAL

Vehicleservice

HW

CAN HAL Software block diagram

Why not vcan / socketCAN?

1. Some product specific requirements need the support from Micon.

2. It’s not easy to meet these requirement with socketCAN (for now).

basesystem (+ an example of Product) IVI-Profile

COM

(normal traffic)

[Communication Service(CAN)]

● Send / Receive (subscribe)

● Echo back

● Com Watch (timeout call back)

● CAN service availability

[can-low-level, can-high-level?]

“HAL I/F” [can hal]

● Open / Close / Send / Recv

● Micon ver get

(can-low-level)

Network Management [Micon + HAL implementation]

● ex. AUTOSAR NM (sleep /wkup)

?

Diagnostic [Micon + HAL implementation + Diag service]

● ex. UDS, OBD

[can-low-level?]

CAN Driver [misc (basesystem doesn’t care)] [socketCAN]

CAN HAL API / Command
API name Description

CanOpen API to initialize each communication path(CAN or other protocol), which needs
CAN type(protocol) and application handle as argument.

CanClose API to finalize each communication path(CAN or other protocol), which needs
CAN type(protocol) and application handle as argument.

CanSend API to send CAN frame which needs pointer to message data, CAN type and
application handle as argument.

CanGetVersion API to get Can microcomputer version information which needs version buffer
and application handle as argument.

Command Description

CID_CANHAL_CMD_CAN_READY Notify availability of Global CAN.

CID_CANHAL_CMD_CAN_SEND_STATUS Notify send result of CAN

CID_CANHAL_CMD_CAN_RECV Notify receive of CAN

Detail : staging/basesystem.git; hal/can_hal/hal_api/can_hal.h

Typical use case : Send CAN data

Communication can_hal CAN device

CAN hal initialization (with API:CanOpen)

API:CanSend

break : Error check

[Invalid data]

par : Asynchronous Transmission

[Send to communication]

[Send to CAN control device]

alt : Network Type

Send Can Frame

Send Result

[CAN protocol]

Service

Request

CID_CANHAL_CMD_CAN_SEND_STATUS

Plan (Idea) for Production Readiness

• We have disclosed HAL APIs, and HAL implementation is
sample only.

• No future plan to contribute the HW specific implementation.
• It’s related to HW support of Production Readiness.

• We think it’s unlikely to merge HALs into IVI-Profile as is.
• Still, we think current HALs can be the reference of actual

products.

