|IC-Service IPC Detailed design
Document

Ver.0.3.2
2021/06/29

<Table of Contents >

1. DOCUMENT PUIPOSE .ttt I5—! 7Ty o2—0hERINTLELEA,
2. CNANEE NISTOIY ettt ettt et st e st et e be st e e eseebesbesseseebesbestenseseebesbenseseetestasanseseasessansannans 1
3. Detailed design of program configuration........cc........ I5—! 7Ty o2—0hERINTLELEA,
3.1. Library program configuration table I5=1 7Ty oe—IBEEINTULELEA,
3.2. Library program configuration diagram............ I5=1 7Ty ov—IhBEREINTULELEA,
3.3. IPC Diversion Section DesigN....ccevueurreenee. I5=1 7Ty ov—IBEREINTULELEA,
3.3.1. IPC Diversion Section Design overviewL 7 —! 7y 72— hEREAhTVWEHA,
3.3.2. IPC Diversion Section Use Case........... I7- 7y o2—IhERINTLEEA,

3.3.3. IPC Diversion Section Mechanism Providing Function DesignT 5 —! 7w 4<% —2
PERSINTLIEHEA,

3.3.3.1. Starting IPC for Server and Client......... I5—! Ty oe—IhERINTLIEHA,
3.3.3.2. Client-side Setting of Callback function for receiving changeL 5 —! 7w o<—2oH
ERINTLELRA,

3.3.3.3. Sending from Server sidecccccorueuuneee.. IS5 7Ty ov—IBEEREINRTULELEA,
3.3.3.4. Reading received data from Server....... I5—! Ty oe—IhERINTLELA,
3.3.3.5. Client and Server Termination......cccceeuuu.... I5—1 Ty o2 —IhERINhTVLEEA,
3.3.4. Variable environment for Setting Socket File Path.......ccooiioeccicieeeeeeeeeceee 9
3.3.5. Definition method of Data protoCol ...t 9

3.3.6. Detecting Data change and specification of notification callbackT 7 —=! 7'y 7<% —2
PERINhTLEEA,

3.4. Library Detail SEQUENCE ...covvveeeeeeeeeceeeeeeeeeeee I5=1 7Ty oe—IBEEREINRTULELEA,
3.4.1. Startup/Initializationcccoceeeeecereecerrcerrenn. I5—! 7Ty o2 —0hERINTLELEA,
3.4.2. Update Data Pool information................... I5—! 7Ty o2 —0hERINTLELEA,
3.4.3. Acquisition APl Process.....cccoeveerrreeeurenen. I5—! 7Ty o2 —0hERINTLEEA,
344, ReGISTEI/NOTITY PrOCESS oottt ettt ettt s s s s s s s s s s e eseaeeeees 15

4. Communication ProtoCol. . eeeeeeeeeseeeeseeeeseeeeseeens I5—! 7Ty o2—0hERINTLELEA,

4.1. Communication protocol Design......cccccveeuneee.. I5=1 7Ty oe—IBEEINTULELEA,
4.1.1. Data & Communication Configuration..... T3 =1 7y 22— hEREINTULIEA,
4.1.2. Data protocol ...ccreeeeeeeeseeeeseeeeseeeesenens I5—! 7Ty o2—0hERINTLELEA,

4.2, Data deSi8N oo I5=1 7Ty oe—IBEEINhTULELEA,

4.2.1. Data Pool design for storing all signal informationT 5 —! 7 v v —ohFERINATL
FtA,

1. Document Purpose

In this document, we design the program configuration, communication protocol, and data related

to IPC between IC-Service and Cluster.

2. Change history

Version Date Detail Editor
0.1.0 2020/11/26 | - #EMER(Z 7)
0.2.0 2020/12/11 - D ERBYERE
0.3.0 2020/12/22 - IPCRARIRERRZ KRICELZE L TH o EIE
0.3.1 2021/06/21 | - HEFEOEIR
0.3.2 2021/06/29 | - [MIZZ=ETEIR

3. Detailed design of Program configuration

3.1. Library program configuration table

Configuration items Overview

77 Cluster Ul part.
Application - Call API functions for Cluster.
Cluster IC-Service data acquisition API Part.

- Provide the signal information obtained from IC-Service to the
application.
- Operate as part of the application process (Layer part where

functions are called from the application)

IC-Service The part has the internal information of the car as signal information.
- Send signal information to the Cluster.

- Operate as a separate process from the application process.

IPC Inter Process Communication
- Perform the function of Inter Process Communication which sends
signal information from IC-Service to Cluster.

- This part is designed and implemented to be used for other than

communication between Cluster and IC-Service.

3.2. Library program configuration diagram

Application

function call get data (return) include

change notification (callback)

Generate/destroy thread

IPC Server source include | IPC function header
Ll . O
ipc_server.c ipc.h (3%1)

1
' API part E
! (cluster) . :
| (Unique part) External public 1
! include header cluster_api.h 1
| API source :
i cluster_api.c :
i include :
i Y i
| :
! API Definition header :
! ag cluster_api_telltale.h |
i =] F & cluster_api_shift_position.h !
! < 28 ; |
| S 0@ g cluster_api_speed.h]
i =] o o h 1
| S 5 S, cluster_api_tacho.h 1
i 3 E cluster_api_tripcomputer.h]
: =] SRNCR = pf p p -t |
! 2 g‘ S cluster_api_registernotify.h !
i S5 2 i
| o & i
| SIS 1
| a8 |
i ®, 1
e e E— E _______________________________________ 1
g
&

i IPC

1 . . .

! (Diversion IPC Client source include _| IPCfunction header

! Section) ipc_client.c ipch (%1)

1 P

: » Change ﬁ"f"o, .

! Generate/destroy thread . . k)

¥ notification (94

([

| %

1 .

: IPC Client write/read 8 pata Pool

i Thread (local memory)

i h

- E’rﬂccfs _______ SR IPC protocol definition

E boundary Sending signal ir?forfnation Defining data size ipc_protocol.h

! (Socket Commumcﬁatwn) o,

! Defining Unix Domain name, data

H IPC Server protocol for all usages including

i Thread those for non IC-Service

i r

function call

! 1
i Server (IC-Service) 1
! (Unique part) !
1

(3 1) In fig, ipc.h described two times in structure, but both are the same

3.3. IPC Diversion Section Design

In 3.2, the IPC part is described for communication between Cluster and IC-Service. The IPC part

is designed and implemented even for a communication protocol between other modules.
3.3.1. IPC Diversion Section Design overview

Design Considering the diversion part of the IPC as follows:
® Prerequisites
> Communication shall be made using Unix Domain Socket.
> epollshall be used to monitor file descriptors
» The implementations for both Client and Server are combined into one .so file.
» One external public header /ncl/ude from both Client and Server.
® External public header file specifications
> The header file name is jpc.h, shown in 3.2.
» Include the header from both the Client side and the Server side.
> Jpc.hhas functions and macros to provide each mechanism of IPC for Client and Server.
» For all usage in jpc_protocol.h (from include ipc.h), "data protocol" and "Unix Domain
name" are defined one by one.
> Select one Client and Server from usage defined in jpc_protocol.h.
® Communication and data specifications
» A thread for IPC communication is generated in the IPC diversion part, client and a
server communicate on the thread.
<~ One process contains a single thread. The same applies when there are multiple
domains used.
< When the Client-side thread starts, it allocates memory for the Data Pool.
» The thread on the Client-side receives the data sent from the server and writes the
received data to the Data Pool.
<{ Sending and receiving all structures defined as the data protocol for the Domain.
< At this time, the Client-side also detects a change in the Data Pool, Callback
notification of the change to the Client-side application.
® Limitations
» The communication direction is only from Server to Client.

> Prohibit multiple servers from using the same Domain.

p. 4

3.3.2. IPC Diversion Section Use Case

IPC Thread

IPC Thread

include

IPC Function Header
ipc.h

include

Thread for ipc of each server and client are
generated and managed in the IPC Diversion
Section

include

include

IPC Thread

£

IPC Thread

include

IPC Thread ‘
m

IPC Function Header
ipc.h

Even when using multiple domain, one thread for

one process

Fig 3.3.2-2 Multiple Domain use (Example)

. . Link with .so
include include

IPC Thread IPC Thread

ipc.h

IPC Thread

m IPC Function Header

jm=mmmmme e Even when communication with multiple clients,
one thread for one process

include

]
P
i i include
|
1

IPC Thread
m

IPC Thread

IPC Function Header
ipc.h

another server cannot be
used with same Domain

]

i]

i Server i

include t |

Fig 3.3.2-4 Unavailable Domain Use (Example)

6

3.3.3. IPC Diversion Section Mechanism Providing Function Design

Preparing some functions for Client and Server that use IPC diversion part.

These functions are declared in joc.h and provided for Client and Server.

Function name Function Overview ‘ User

ipcServerStart() Start IPC Server Server

ipcSendMessage() Send data to Client. Server

ipcServerStop() Stop IPC Server. Server

ipcClientStart() Start the IPC Client and connect to the IPC Server in the | Client
same domain.

ipcReadDataPool() Read all the data received from the Server which stored | Client
at Data Pool.

ipcRegisterCallback() Register the callback function to receive the Data Pool | Client
change notifications.

ipcClientStop() Stop IPC Client. Client

Next section, Describing functions usage way (idea).

3.3.3.1. Starting IPC for Server and Client

ipcServerStart() and ipcClientStart() are called by specifying the usage type (enum) as an

argument.

Call for the IC-Service as follows:

® Server-side (called before Client-side)
ipcServerStart(IPC_USAGE_TYPE_IC_SERVICE);

B Execute socket(), bind(), listen() as a servers for IC-Service usage.

Wait for a connection from a Client that specifies the same usage type.

B Create a thread for monitoring the connection status from the Client.

» Monitor state by epoll, connect to Client by accept(),disconnect from Client by

close().

® C(Client-side

ipcClientStart(IPC_USAGE_TYPE_IC_SERVICE);

7

B Create a Data Pool area for storing received data.
Data Pool size depends on the type of usage.
B Execute socket() and connect() as a client for IC-Service usage.

Connect to a server with the same usage type

3.3.3.2.Client side Setting of Callback function for change receiving

ipcRegisterCallback() is called by specifying the usage type (enum) and the callback function.
Call only from the Client side.
The callback function specified here is used for notification of changes in data received from the
Server.
For IC-Service is executed as follows (Example):
® ipcRegisterCallback(IPC_USAGE_TYPE_IC_SERVICE, changeNotifyCb)
» Able to receive callback notifications for all data monitored in the usage.
> In IC-Service, only the change of the parameter corresponding to 3-2-1 TellTale in the
attachment [1C-Service APl _rev0.4.docx] is monitored.
(For example, if the value corresponding to getSeatbelt() of Telltale changes, it will be
notified, but if the value corresponding to getFrontRightSeatbelt() does not correspond to
3 -2 -1 TellTale, notification will not be sent).
® Store only one callback function for each usage type. If ipcRegisterCallback() is called again
for the same usage type, it will be overwritten.

® See 3.3.5 for callback specifications.
3.3.3.3.Sending from Server side

ipcSendMessage() is called by specifying the usage type (enum) and sending data (address, size).
Call only from Server.
For IC-Service execute as follows (Example)
® ipcSendMessage(IPC_USAGE_TYPE_IC_SERVICE, &datalcService, sizeof(datalcService));
B |nthe 2" and 3 arguments, specify a head address and the size of sending data.
B In the case of IC-Service, the IPC_DATA_IC_SERVICE_S structure is used as the sending
data.
B \When executed, data is sent to the Client (all if there are multiple) that specify the same

usage type.
3.3.3.4.Reading received data from Server

ipcReadDataPool() is called by specifying the usage type (enum), the received data storage

address, and the received data storage size.

Call only from Client.
For IC-Service execute as follows (Example):
® ipcReadDataPool(IPC_USAGE_TYPE_IC_SERVICE, &datalcService, &size);
B Data received from the Server in the Data Pool.
B When calling this function, read the entire contents of the Client DataPool.
B |n the second argument, specify the address to store the contents of DataPool.
Prepare the entity of IPC_DATA_IC_SERVICE_S structure for IC-Service.
B The third argument is input/output, at input specifying the size of the storage destination

specified by the second argument, and at the output substitute real stored size.

3.3.3.5.Client and Server Termination

ipcServerStop() and ipcClientStop() are called by specifying the usage type (enum) argument.
For IC-Service is called as follows.
® Client side (recommended to call before Server)
m ipcClientStop(IPC_USAGE_TYPE_IC_SERVICE);
> Disconnect from a Server (shutdown(), close())
» Releasing the Data Pool area.
® Server side
m ipcServerStop(IPC_USAGE_TYPE IC_SERVICE);
> Disconnect from all connected clients (close())

» Close of own Socket.

3.3.4. Variable environment for Setting Socket File Path

When ipcServerStart() is executed, generate a Socket file for communication between Server and
Client (using Unix Domain Socket).

By default, a Socket file is created at the server application execution location, but the environment
variable IPC_DOMAIN_PATH can specify the Socket file generation path.

For example, if IPC_DOMAIN_PATH is set to "/tmp", then Socket files will be generated for IC-

Service with the path name "/tmp/ipclcService".

3.3.5. Definition method of Data protocol

Data sent and received for each usage, and the Unix Domain name for communication are defined

within ipc_protocol.h.

The definition is as follows.

Client/Server)

Server)

An enum definition for Client/Server selects a usage type.

Data protocol (structure) definition corresponding to the usage type (referable from

enum definition for changed data type corresponding to usage type (referable from Client /

Data Pool size and Domain name definition corresponding to usage type (used inside IPC).

Change detection address (offset) table corresponding to the usage type (used inside IPC).

Selecting usage

External

Client or Server

Structure reference

ublic

o T

efinition | " usage list (enum)

IC Service usage

XXX usage

i

add definition
as needed

Change type reference

r

IC Service

structure for
XXX

.

Refer to each
information
according to the
selected usage

PC
Diversion
Section
Internal

use definition

Data protocol (structure) list

structure for | Corresponding|

to each usage

Data protocol (structure) list

Data change type

e m i —mm sy

enum for IC Service
Correspond

to each usa

Data change type
enum for XXX

* add definition * add definition
as needed

as needed

Data Pool size, Domain name information

IC-ServiceF

zeof(C) Use this information
sizeoft) e to determine Data Pool size

“ipclcService”

Domain name for

sending socket

XX
sizeof(H0

"ip K"

Corresponding
to each usage

+

+ add definition as needed

change confirmation table

|C-ServiceFd

[f8BlenumiE, offsetof(O0). F77 |

‘ f@Rllenum(l, offsetof(13), T4 & ‘

define as many as Type

* add definition as needed

anfea

od£3 winus 03

puodsaxro)

10

3.3.6. Detecting Data change and specification of notification callback

When data is sent from the Server to the Client, the Client-side detects changes in the data and

calls the callback function for the change notification.

® Change detection method (Client-side, IPC thread processing)

» Foreach usage, prepare a "change confirmation table" which arranges the offset address
and size within the structure related to detected data for change.
(all structures are processed in the same way)

» When data sent from the Server to the Client, the Client temporarily stores the received
data in a local variable within the thread.

» Regarding local variables and Data Pool, compare each data according to the "change
confirmation table".

» When a changed value is detected, the Client notified a callback about that value.

® Callback specification
> Ask the Client to register a callback function in advance.
» The callback function definition is as follows (It can handle any usage);
typedef void (*IPC_CHANGE_NOTIFY_CB)(void * pData, signed long size, int kind):
- pData : Store address of changed data
- size ' The size of the data

- kind : Data type (enum value according to usage)

® Regarding creating a change confirmation table

» The offset table of each data in the structure can be easily created using offsetof().

3.4. Library Detail Sequence

3.4.1. Startup/Initialization

App Starting

Initialization various internal data

App Client Service Server
Cluster IPC Diversion Cluster IPC
| System | App API Section API Client Thread Cluster Data Pool -
T T T T T Storing Memory
u I L L i
Start Main Unit 1 tion
[| [1 [] |
) I) T) Ll i
1C-Servige Starting f n f n i
[[[' ['
' | ' 1 ' 1 =
H | H H | Initialization various internal
) I) . Ll
i I i [
' ! ' IPC Server start for IC-Service B. ' ipcServerStart()
' '
) I) T
4 | 4 . Generate Thread
H i H ! _ (pthread_create)
' i '
. { . pcServerstart()
) I)
' | ' return(success)
I
: | :
| | | Initialization InThread variable
) I)
) I)
I ; | Run socket(), bind(), listen()
' i ' to connect with client
H | H
) I)
' 1 ' Initialization on Server side until here b.
' '
) I)
) I)
I)
i '
I)
I)
i '
'
'
'
]
'
'
'
]

IPC Client start for [C-Service B.

T
Generate Thread |
(pthread_create) |

ipcClientStart()
return(success)

Initalization of In Thread vmahleshi

Secure Memory

connedt()
connect with Server

't fd of Client

after this, loop for Receiving data B. after this, loop for Sending dmh.

fipcRegisterCallback()
Callback registration
I —

Remember callback open

number for change
notification

ipcRegisterCallback()
return (success)

clusterUilnit()
return (success)

i
|Initia]ization on Client side unti]b.

| I | -

p. 12

3.4.2. Update Data Pool information

App Client

Cluster IPC Client

Thread Cluster Data Pool

Storing Memory
1

[k

Service Server

By epoll) Waiting for receiving

data from Server

following,

check and notify at any time

Check if there updating on

Signal information

alt /I Only when there is an update in the signal

Sending data(ﬁend (:1 J

E

By recv()

Get receiving data

Request sending data

Receiving data from the server

Write

‘MutexLock required (For local)

Exclusive with Read from application thread

ipcSendMessage()

Sending all signal information

pcSendMessage()

return(success)

............................. }

By epoll() for second time

waiting for receiving data from Server

3.4.3. Acquisition APl Process

Cluster
App API

IPC Diversion

Section API Cluster Data Pool
Storing Memory

-

getX0() Calling

Perform when calling any getXXX() function

ipcReadDataPool()
(Reading Function)

Get only the signal information you need,
depending on the type of function called
getXXX0

get}d() retum
(signal data)

ipcReadDataPool()

return(get all signal data)

11 signal information

Read

MutexLock required (For local)

Exclusive with Write from application thread

]

14

3.4.4. Register/Notify Process

registerlcHmi()
Calling

¢ return true(success)

Save specified signal type
and callback function

: Data Pool change monitoring, callback notification L

App Client Service Server
Cluster Cluster IPC 8
API Client Thread Cluster Data Pool
- - Storing Memory
s \ a | i
: [Register (calback ion) | :
L]

Byepoll() Waiting for receiving
data from Server

Check if there updating on

Signal information

1

altJ Only when there is an update in the signal infor:

'mation

Sending data (send())

By recv()

get receivinlg data
storing local

function onge

Reading status data
Read

Request Sending data

ipcSendMessage()
Sending all signal information;

Comparison between Local function and Data Popl
Checking for Data Pool change

alt J Only when Data P

00l has been updated
Change type, change data, callback function call '
data size notification (Registered by
ipeRegisterCallback()

Check if the data notified by IPC
is monitored signal

alt / Only when signal

monitored

Change t; callback function call
signal no (Re_glstered by
registerlcHm10)
[
Processed by IPC thread

Run processing according

to notified value

return(No return value)

return(No return value)

Waiting for receiving data from Server

Byepoll) for second time {

Recelving data from Server
Write

MutexLock required (For local)

Exclusive with Read from application thread I:l

MutexLock required (For local)

Exclusive with Read from application thread I)l

pcSendMessage()
return(success)

p. 15

4. Communication protocol

4.1. Communication protocol Design

Design data to communicate between Cluster and IC-Service.

4.1.1. Data & Communication Configuration

Application
Callback registration for get signal information
change notification via getXXX() API
e e]
| API part |
! (for cluster) h J L) !
i]
| AP |
] 1
i |
| Callback notification Callback registration |
X Output Data Pool Get Data Pool !
| |
] 1
R T SO H
: IPC (Diversion Section) For getting data
Read
API » Data Pool
&

1 Generate thread

IPC thread

Read to confirm chang
Receiving data Write to update
(Socket Communication)

For IC-Service

Domain name Domain and data protocol

"ipclcService"

communication

: Sending data
(Socket Communication)

IPC thread
I

Generate thread

Sending all signal information

IC-Service

4.1.2. Data protocol

The Domain name for IC-Service used in IPC is defined as "ipclcService" in ipc_protocol.h
IC-Service is Server, and Cluster is Client. All signal information is sent from IC-Service to
Cluster (application side).
All signal information shall be combined into a single structure, sent and received by the IPC
diversion section.
» This structure is defined in ipc_protocol.h for IC-Service.
> In " Data Pool %4 X% xIsx" attachment, assumed that all the data collected into a
structure.
(Based on the return value of each APl in IC-Service_API_rev0.4.docx)
» Every time would send all signal information together, even if only some signals changed
The sending time from IC-Service to Cluster is assumed to be about 10 msec.
The getXXX () function call from the application returns the contents stored currently in the
Data Pool.
» Do not return all signals; output only the signal information corresponding to getXXX()
to the application as the function's return value.
The acquisition signal and callback function registered by registerlcHmi() from the
application are stored and managed in Cluster.
According to the notifylcHmi() specification, the callback function sends only the changed
signal information to the application.
When a change notification callback is received from the IPC diversion part, the callback is

notified to the application only when the signal is changed by registerlcHmi().

4.2. Data design

4.2.1. Data Pool design for storing all signal information

All signal information sent from the IC-Service is stored in the Data Pool as described in
4.1.2.

The size required as a Data Pool for the Domain name "ipclcService" is 276 bytes in a 32-
bit environment and 296 bytes in a 64-bit environment, as described in the Attachment "
Data Pool 4 XE&HE xIsx ".

In order to confirm changes in signal information, all Data Pool and comparison signal

information will be local within the IPC thread (The size is equal to 276 or 296 bytes.).

p. 17

	1. Document Purpose
	2. Change history
	3. Detailed design of Program configuration
	3.1. Library program configuration table
	3.2. Library program configuration diagram
	3.3. IPC Diversion Section Design
	3.3.1. IPC Diversion Section Design overview
	3.3.2. IPC Diversion Section Use Case
	3.3.3. IPC Diversion Section Mechanism Providing Function Design
	3.3.3.1. Starting IPC for Server and Client
	3.3.3.2. Client side Setting of Callback function for change receiving
	3.3.3.3. Sending from Server side
	3.3.3.4. Reading received data from Server
	3.3.3.5. Client and Server Termination
	3.3.4. Variable environment for Setting Socket File Path
	3.3.5. Definition method of Data protocol
	3.3.6. Detecting Data change and specification of notification callback

	3.4. Library Detail Sequence
	3.4.1. Startup/Initialization
	3.4.2. Update Data Pool information
	3.4.3. Acquisition API Process
	3.4.4. Register/Notify Process

	4. Communication protocol
	4.1. Communication protocol Design
	4.1.1. Data & Communication Configuration
	4.1.2. Data protocol

	4.2. Data design
	4.2.1. Data Pool design for storing all signal information

