

IC-Service IPC Detailed design

Document

Ver.0.3.2

2021/06/29

＜Table of Contents＞

 Document Purpose... エラー! ブックマークが定義されていません。
 Change history ... 1
 Detailed design of program configuration エラー! ブックマークが定義されていません。
3.1. Library program configuration table エラー! ブックマークが定義されていません。
3.2. Library program configuration diagram エラー! ブックマークが定義されていません。
3.3. IPC Diversion Section Design エラー! ブックマークが定義されていません。

 IPC Diversion Section Design overviewエラー! ブックマークが定義されていません。
 IPC Diversion Section Use Case エラー! ブックマークが定義されていません。
 IPC Diversion Section Mechanism Providing Function Designエラー! ブックマーク

が定義されていません。
3.3.3.1. Starting IPC for Server and Client エラー! ブックマークが定義されていません。
3.3.3.2. Client-side Setting of Callback function for receiving changeエラー! ブックマークが
定義されていません。
3.3.3.3. Sending from Server side エラー! ブックマークが定義されていません。
3.3.3.4. Reading received data from Server エラー! ブックマークが定義されていません。
3.3.3.5. Client and Server Termination エラー! ブックマークが定義されていません。

 Variable environment for Setting Socket File Path ... 9
 Definition method of Data protocol ... 9
 Detecting Data change and specification of notification callbackエラー! ブックマーク

が定義されていません。
3.4. Library Detail Sequence エラー! ブックマークが定義されていません。

 Startup/Initialization エラー! ブックマークが定義されていません。
 Update Data Pool information.................... エラー! ブックマークが定義されていません。
 Acquisition API Process エラー! ブックマークが定義されていません。
 Register/Notify Process ... 15

 Communication protocol ... エラー! ブックマークが定義されていません。
4.1. Communication protocol Design........................ エラー! ブックマークが定義されていません。

 Data & Communication Configuration エラー! ブックマークが定義されていません。
 Data protocol ... エラー! ブックマークが定義されていません。

4.2. Data design .. エラー! ブックマークが定義されていません。
 Data Pool design for storing all signal informationエラー! ブックマークが定義されてい

ません。

p. 1

 Document Purpose
In this document, we design the program configuration, communication protocol, and data related
to IPC between IC-Service and Cluster.

 Change history
Version Date Detail Editor

0.1.0 2020/11/26 ・ 初回作成(ラフ)
0.2.0 2020/12/11 ・ ひと通り設計
0.3.0 2020/12/22 ・ IPC流用可能部を実際に実装してから整理
0.3.1 2021/06/21 ・ 英語の翻訳
0.3.2 2021/06/29 ・ 図は英語で翻訳

 ・
 ・
 ・
 ・

p. 2

 Detailed design of Program configuration
3.1. Library program configuration table

Configuration items Overview
アプリ
Application

Cluster UI part.
- Call API functions for Cluster.

Cluster IC-Service data acquisition API Part.
- Provide the signal information obtained from IC-Service to the

application.
- Operate as part of the application process (Layer part where

functions are called from the application)
IC-Service The part has the internal information of the car as signal information.

- Send signal information to the Cluster.
- Operate as a separate process from the application process.

IPC Inter Process Communication
- Perform the function of Inter Process Communication which sends

signal information from IC-Service to Cluster.
- This part is designed and implemented to be used for other than

communication between Cluster and IC-Service.

p. 3

3.2. Library program configuration diagram

 Application

function call get data (return)
change notification (callback)

External public
header cluster_api.h

 API Definition header
cluster_api_telltale.h
cluster_api_shift_position.h
cluster_api_speed.h
cluster_api_tacho.h
cluster_api_tripcomputer.h
cluster_api_registernotify.h fu

nc
tio

n
ca

ll

D
ata Pool inform

ation
C

hange notification (callback)

API part
(cluster)
(Unique part)
 API source

cluster_api.c

ipc_client.c

Change
notification Generate/destroy thread

 IPC Client
Thread

 Data Pool
(local memory)

IPC protocol definition
ipc_protocol.h

IPC function header
ipc.h (※1)

 IPC Server
Thread

 IPC Server source
ipc_server.c

 Server (IC-Service)
(Unique part)

function call

In fig, ipc.h described two times in structure, but both are the same

Generate/destroy thread

Process
boundary

Defining Unix Domain name, data
protocol for all usages including
those for non IC-Service

IPC
(Diversion
Section)

p. 4

3.3. IPC Diversion Section Design
In 3.2, the IPC part is described for communication between Cluster and IC-Service. The IPC part
is designed and implemented even for a communication protocol between other modules.

 IPC Diversion Section Design overview

Design Considering the diversion part of the IPC as follows:
 Prerequisites

 Communication shall be made using Unix Domain Socket.
 epoll shall be used to monitor file descriptors
 The implementations for both Client and Server are combined into one .so file.
 One external public header Include from both Client and Server.

 External public header file specifications
 The header file name is ipc.h, shown in 3.2.
 Include the header from both the Client side and the Server side.
 ipc.h has functions and macros to provide each mechanism of IPC for Client and Server.
 For all usage in ipc_protocol.h (from include ipc.h), "data protocol" and "Unix Domain

name" are defined one by one.
 Select one Client and Server from usage defined in ipc_protocol.h.

 Communication and data specifications
 A thread for IPC communication is generated in the IPC diversion part, client and a

server communicate on the thread.
 One process contains a single thread. The same applies when there are multiple

domains used.
 When the Client-side thread starts, it allocates memory for the Data Pool.

 The thread on the Client-side receives the data sent from the server and writes the
received data to the Data Pool.
 Sending and receiving all structures defined as the data protocol for the Domain.
 At this time, the Client-side also detects a change in the Data Pool, Callback

notification of the change to the Client-side application.
 Limitations

 The communication direction is only from Server to Client.
 Prohibit multiple servers from using the same Domain.

p. 5

 IPC Diversion Section Use Case

Fig 3.3.2-1 One-to-one (Example)

Fig 3.3.2-2 Multiple Domain use (Example)

Link with .so

IPC Thread

IPC Function Header
ipc.h

IPC Thread

Link with .so

Sending data
via IPC

Thread for ipc of each server and client are
generated and managed in the IPC Diversion
Section

IPC
Diversion
Section
(.so)

Link with .so Link with .so

Link with .so

IPC Thread

IPC Thread

IPC
Diversion
Section
(.so)

IPC Thread

IPC Function Header
ipc.h

Even when using multiple domain, one thread for
one process

p. 6

Fig 3.3.2-3 One Domain, Multiple Clients (Example)

Fig 3.3.2-4 Unavailable Domain Use (Example)

Link with .so Link with .so

IPC Thread

IPC Thread

IPC Thread
IPC
Diversion
Section
(.so)

IPC Function Header
ipc.h

Link with .so

Even when communication with multiple clients,
one thread for one process

IPC Thread

IPC Thread

IPC Function Header
ipc.h

Link with .so

IPC
Diversion
Section
(.so)

Link with .so

another server cannot be
used with same Domain

p. 7

 IPC Diversion Section Mechanism Providing Function Design

Preparing some functions for Client and Server that use IPC diversion part.
These functions are declared in ipc.h and provided for Client and Server.
Function name Function Overview User
ipcServerStart() Start IPC Server Server
ipcSendMessage() Send data to Client. Server
ipcServerStop() Stop IPC Server. Server
ipcClientStart() Start the IPC Client and connect to the IPC Server in the

same domain.
Client

ipcReadDataPool() Read all the data received from the Server which stored
at Data Pool.

Client

ipcRegisterCallback() Register the callback function to receive the Data Pool
change notifications.

Client

ipcClientStop() Stop IPC Client. Client

Next section, Describing functions usage way (idea).

3.3.3.1. Starting IPC for Server and Client

ipcServerStart() and ipcClientStart() are called by specifying the usage type (enum) as an
argument.
Call for the IC-Service as follows:

 Server-side (called before Client-side)

ipcServerStart(IPC_USAGE_TYPE_IC_SERVICE);
 Execute socket(), bind(), listen() as a servers for IC-Service usage.

Wait for a connection from a Client that specifies the same usage type.
 Create a thread for monitoring the connection status from the Client.

 Monitor state by epoll, connect to Client by accept(),disconnect from Client by
close().

 Client-side
ipcClientStart(IPC_USAGE_TYPE_IC_SERVICE);

p. 8

 Create a Data Pool area for storing received data.
Data Pool size depends on the type of usage.

 Execute socket() and connect() as a client for IC-Service usage.
Connect to a server with the same usage type

3.3.3.2. Client side Setting of Callback function for change receiving

ipcRegisterCallback() is called by specifying the usage type (enum) and the callback function.
Call only from the Client side.
The callback function specified here is used for notification of changes in data received from the
Server.
For IC-Service is executed as follows (Example):
 ipcRegisterCallback(IPC_USAGE_TYPE_IC_SERVICE, changeNotifyCb)

 Able to receive callback notifications for all data monitored in the usage.
 In IC-Service, only the change of the parameter corresponding to 3-2-1 TellTale in the

attachment「IC-Service_API_rev0.4.docx」is monitored.
(For example, if the value corresponding to getSeatbelt() of Telltale changes, it will be
notified, but if the value corresponding to getFrontRightSeatbelt() does not correspond to
3 -2 -1 TellTale, notification will not be sent).

 Store only one callback function for each usage type. If ipcRegisterCallback() is called again
for the same usage type, it will be overwritten.

 See 3.3.5 for callback specifications.

3.3.3.3. Sending from Server side

ipcSendMessage() is called by specifying the usage type (enum) and sending data (address, size).
Call only from Server.
For IC-Service execute as follows (Example)
 ipcSendMessage(IPC_USAGE_TYPE_IC_SERVICE, &dataIcService, sizeof(dataIcService));

 In the 2nd and 3rd arguments, specify a head address and the size of sending data.
 In the case of IC-Service, the IPC_DATA_IC_SERVICE_S structure is used as the sending

data.
 When executed, data is sent to the Client (all if there are multiple) that specify the same

usage type.

3.3.3.4. Reading received data from Server

ipcReadDataPool() is called by specifying the usage type (enum), the received data storage
address, and the received data storage size.

p. 9

Call only from Client.
For IC-Service execute as follows (Example):
 ipcReadDataPool(IPC_USAGE_TYPE_IC_SERVICE, &dataIcService, &size);

 Data received from the Server in the Data Pool.
 When calling this function, read the entire contents of the Client DataPool.
 In the second argument, specify the address to store the contents of DataPool.

Prepare the entity of IPC_DATA_IC_SERVICE_S structure for IC-Service.
 The third argument is input/output, at input specifying the size of the storage destination

specified by the second argument, and at the output substitute real stored size.

3.3.3.5. Client and Server Termination

ipcServerStop() and ipcClientStop() are called by specifying the usage type (enum) argument.
For IC-Service is called as follows.
 Client side (recommended to call before Server)

 ipcClientStop(IPC_USAGE_TYPE_IC_SERVICE);
 Disconnect from a Server (shutdown(), close())
 Releasing the Data Pool area.

 Server side
 ipcServerStop(IPC_USAGE_TYPE_IC_SERVICE);

 Disconnect from all connected clients (close())
 Close of own Socket.

 Variable environment for Setting Socket File Path

When ipcServerStart() is executed, generate a Socket file for communication between Server and
Client (using Unix Domain Socket).
By default, a Socket file is created at the server application execution location, but the environment
variable IPC_DOMAIN_PATH can specify the Socket file generation path.
For example, if IPC_DOMAIN_PATH is set to "/tmp", then Socket files will be generated for IC-
Service with the path name "/tmp/ipcIcService".

 Definition method of Data protocol

Data sent and received for each usage, and the Unix Domain name for communication are defined
within ipc_protocol.h.

p. 10

The definition is as follows.
 An enum definition for Client/Server selects a usage type.
 Data protocol (structure) definition corresponding to the usage type (referable from

Client/Server)
 enum definition for changed data type corresponding to usage type (referable from Client /

Server)
 Data Pool size and Domain name definition corresponding to usage type (used inside IPC).
 Change detection address (offset) table corresponding to the usage type (used inside IPC).

Selecting usage Structure reference Change type reference

usage list (enum) Data protocol (structure) list Data protocol (structure) list

Refer to each
information
according to the
selected usage

add definition
as needed

add definition
as needed

add definition
as needed

Corresponding
to each usage
 Corresponding

to each usage

External
public
definition

IC Service usage

XXX usage

structure for
IC Service

structure for
XXX

Data change type
enum for XXX

IPC
Diversion
Section
Internal
use definition

change confirmation table

Domain name for
sending socket

C
orrespond

to enum
 type

value

p. 11

 Detecting Data change and specification of notification callback

When data is sent from the Server to the Client, the Client-side detects changes in the data and
calls the callback function for the change notification.

 Change detection method (Client-side, IPC thread processing)

 For each usage, prepare a "change confirmation table" which arranges the offset address
and size within the structure related to detected data for change.
(all structures are processed in the same way)

 When data sent from the Server to the Client, the Client temporarily stores the received
data in a local variable within the thread.

 Regarding local variables and Data Pool, compare each data according to the "change
confirmation table".

 When a changed value is detected, the Client notified a callback about that value.

 Callback specification
 Ask the Client to register a callback function in advance.
 The callback function definition is as follows (It can handle any usage);

typedef void (*IPC_CHANGE_NOTIFY_CB)(void * pData, signed long size, int kind);
・pData : Store address of changed data
・size： The size of the data
・kind： Data type (enum value according to usage)

 Regarding creating a change confirmation table
 The offset table of each data in the structure can be easily created using offsetof().

p. 12

3.4. Library Detail Sequence

 Startup/Initialization

System App
Cluster IPC

Client Thread

Cluster Data Pool

Storing Memory

Start Main Unit implementation

Starting

IPC Server start for IC-Service

Run socket(), bind(), listen()
to connect with client

Initialization on Server side until here

IPC Client start for IC-Service

Remember callback open
number for change
notification

accept() get fd of Client

after this、loop for Sending data

Initialization on Client side until

App Starting

Generate Thread

return(success)

Generate Thread

return(success)

Secure Memory

connect with Server

Callback registration

return (success)

return (success)

p. 13

 Update Data Pool information

Cluster IPC Client
Thread Cluster Data Pool

Storing Memory

IC-Service
IPC Server Thread

following, check and notify at any time

By epoll() Waiting for receiving

data from Server

Check if there updating on

Signal information

return(success)

Request sending data

Sending data

By recv()

Get receiving data

Receiving data from the server

By epoll() for second time

waiting for receiving data from Server

MutexLock required (For local)
Exclusive with Read from application thread

Only when there is an update in the signal

p. 14

 Acquisition API Process

App
IPC Diversion
Section API Cluster Data Pool

Storing Memory

Perform when calling any getXXX() function

Calling

(Reading Function)

return(get all signal data)

(signal data)

Get only the signal information you need,
depending on the type of function called
getXXX()

All signal information

MutexLock required (For local)
Exclusive with Write from application thread

p. 15

 Register/Notify Process

App
Cluster IPC

Client Thread

Cluster Data Pool
Storing Memory

IC-Service
IPC Server Thread IPC Diversion

Section API

Calling

return true(success)

Save specified signal type
and callback function

Data Pool change monitoring, callback notification

By epoll() Waiting for receiving
data from Server

Check if there updating on
Signal information

Only when there is an update in the signal information

Reading status data

Sending all signal information

return(success)

Request Sending data

Sending data

By recv()
get receiving data
storing local function once

MutexLock required (For local)
Exclusive with Read from application thread

MutexLock required (For local)
Exclusive with Read from application thread

By epoll() for second time

Waiting for receiving data from Server

Receiving data from Server
Write

Register processing (callback registration)

Only when Data Pool has been updated

callback function call
(Registered by
ipcRegisterCallback())

Change type, change data,
data size notification

Check if the data notified by IPC
is monitored signal

Only when signal monitored

callback function call
(Registered by
registerIcHmi())

return(No return value)

return(No return value)

Comparison between Local function and Data Pool
Checking for Data Pool change

Change type, change
signal notification

Processed by IPC thread
Run processing according
to notified value

p. 16

 Communication protocol
4.1. Communication protocol Design

Design data to communicate between Cluster and IC-Service.

 Data & Communication Configuration

 Application

get signal information
via getXXX() API

Callback registration for
change notification

API part
(for cluster)

Callback notification
Output Data Pool

Callback registration
 Get Data Pool

IPC (Diversion Section)
 For getting data

Generate thread

Read to confirm change
Write to update

Receiving data
(Socket Communication)

For IC-Service
Domain and data protocol
communication

Sending data
(Socket Communication)

Generate thread

IPC thread

IPC thread

Domain name
"ipcIcService"

Sending all signal information

p. 17

 Data protocol

 The Domain name for IC-Service used in IPC is defined as "ipcIcService" in ipc_protocol.h
 IC-Service is Server, and Cluster is Client. All signal information is sent from IC-Service to

Cluster (application side).
 All signal information shall be combined into a single structure, sent and received by the IPC

diversion section.
 This structure is defined in ipc_protocol.h for IC-Service.
 In " Data Pool サイズ整理.xlsx" attachment, assumed that all the data collected into a

structure.
(Based on the return value of each API in IC-Service_API_rev0.4.docx)

 Every time would send all signal information together, even if only some signals changed
 The sending time from IC-Service to Cluster is assumed to be about 10 msec.
 The getXXX () function call from the application returns the contents stored currently in the

Data Pool.
 Do not return all signals; output only the signal information corresponding to getXXX()

to the application as the function's return value.
 The acquisition signal and callback function registered by registerIcHmi() from the

application are stored and managed in Cluster.
 According to the notifyIcHmi() specification, the callback function sends only the changed

signal information to the application.
 When a change notification callback is received from the IPC diversion part, the callback is

notified to the application only when the signal is changed by registerIcHmi().

4.2. Data design

 Data Pool design for storing all signal information

 All signal information sent from the IC-Service is stored in the Data Pool as described in
4.1.2.

 The size required as a Data Pool for the Domain name "ipcIcService" is 276 bytes in a 32-
bit environment and 296 bytes in a 64-bit environment, as described in the Attachment "
Data Pool サイズ整理.xlsx ".

 In order to confirm changes in signal information, all Data Pool and comparison signal
information will be local within the IPC thread (The size is equal to 276 or 296 bytes.).

	1. Document Purpose
	2. Change history
	3. Detailed design of Program configuration
	3.1. Library program configuration table
	3.2. Library program configuration diagram
	3.3. IPC Diversion Section Design
	3.3.1. IPC Diversion Section Design overview
	3.3.2. IPC Diversion Section Use Case
	3.3.3. IPC Diversion Section Mechanism Providing Function Design
	3.3.3.1. Starting IPC for Server and Client
	3.3.3.2. Client side Setting of Callback function for change receiving
	3.3.3.3. Sending from Server side
	3.3.3.4. Reading received data from Server
	3.3.3.5. Client and Server Termination
	3.3.4. Variable environment for Setting Socket File Path
	3.3.5. Definition method of Data protocol
	3.3.6. Detecting Data change and specification of notification callback

	3.4. Library Detail Sequence
	3.4.1. Startup/Initialization
	3.4.2. Update Data Pool information
	3.4.3. Acquisition API Process
	3.4.4. Register/Notify Process

	4. Communication protocol
	4.1. Communication protocol Design
	4.1.1. Data & Communication Configuration
	4.1.2. Data protocol

	4.2. Data design
	4.2.1. Data Pool design for storing all signal information

