
Version 1.0
Production Readiness Specification

Requirements Definition

Sep 30, 2021

Copyright © 2021, Automotive Grade Linux.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Contents

Contents 1

Purpose 3

Scope 4

Glossary 5

Use cases and Functional requirements 7
Power State Management 7

Abstraction 7
Use cases 8
Functional Requirements 13
Power State Management in Basesystem 14

Reference implementation by Basesystem 14
Power Service 15
System Manager 15

Service Launch and Termination 16
Abstraction 16
Use cases 17
Functional Requirements 18
Service Launch and Termination in Basesystem 20

Reference implementation in Basesystem 20
System manager 21
Task manager 22

System Failure Detection and Procedures 22
Abstraction 22
Use cases 23

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 2 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Functional Requirements 24
Service Failure detection in Basesystem 26

Reference implementation in Basesystem 26
System manager 28
Resource manager 28

System Logging Support 29
Abstraction 29
Use cases 29
Functional Requirements 30
System Logging Support in Basesystem 31

Reference implementation in Basesystem 31
Logger Service 33
Framework Unified 33

Persistent Data Management 33
Abstraction 33
Use cases 34
Functional Requirements 34
Persistent Data Management in Basesystem 35

Reference implementation in Basesystem 35
Backup manager

37
Vehicle Parameter Configuration 38

Abstraction 38
Use cases 38
Function Requirements 39
Vehicle Parameter Configuration in Basesystem 40

Reference implementation in Basesystem 40
Vehicle Parameter Library 40

CAN Communication 40

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 3 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Abstraction 40
Use cases 41
Function Requirements 42
CAN Communication in Basesystem 43

Reference implementation in Basesystem 43
Communication 44

GPS and Sensor information 44
Abstraction 44
Use cases 45
Function Requirements 46
GPS and Sensor information in Basesystem 47

Reference implementation in Basesystem 47
Positioning 48

[Change history]

[No] [Date] [Version] [Description] [Changer]

1 2021/9/30 v1.0 First edition Riku Nomoto(Woven Alpha, Inc.)

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 4 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

1. Purpose

Automotive Grade Linux(AGL) is a Linux Foundation Workgroup dedicated to create
open source software solutions for automotive. In the activity of AGL, by targeting
In-Vehicle-Infotainment(IVI) systems, Production Readiness activity has started from
October in 2020. Production Readiness is an activity to ensure that AGL's software
meets the requirements and quality as required by the IVI in-vehicle.

As a part of this activity, we conduct an activity to describe the function requirements
that would be commonly required for each Automotive company's IVI products.

2. Scope

AGL published a requirement specification as AGL Requirement Specification v1.0.
However, it has been six years since it was published and there is a gap between the
source code and the specification document. Also, “Requirements for Production” is not
clearly defined. In order to resolve these issues, IVI-EG have created
ProductionReadinessProfile to disclose the source code of actual products based on the
principle of "Code first", and developed the requirements specification that corresponds
with the code.

The figure 1 is a diagram created based on the architectural diagram described in that
document, and this document targets the service layer.

Figure1) Scope of this document

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 5 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

This is the software architecture diagram of Basesystem that is platform services based
on actual IVI products, and that is open sourced through IVI-EG activity. This document
refers to Basesystem as examples of the implementation.

Figure 2) Basesystem unit

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 6 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

3. Glossary

Here is an explanation of terminology.

Table3

Item Description

1 Basesystem A group of software located in a layer close to Operating
System. It has been contributed to AGL in March 2021.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 7 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

2 IVI In-Vehicle-Infotainment.
On-board equipment which has navigation, audio functions,
and so on.

3 IVI system The system for booting IVI up.

4 ACC(Accessory) The power source that supplies electricity to the IVI and other
electrical components.When ACC is turned on, the
information is sent to IVI and IVI is activated.
In addition to ACC, there are other power sources such as +B
and IG in general.

5 HMI Human Machine Interface.
In particular, this document refers to the Interface, which is
operated by the user on the IVI.

6 Heartbeat The function to confirm the behaviors by the regular
communication between the two processes.

7 Resident service A service that launches automatically at system startup. The
Resident service is always running while the IVI is running,
and provides functions as needed.

8 Non-resident
service

A service that is activated by a request from an application.
The non-resident service is not activated except when it is
requested to be activated as needed.

9 Service
launcher

A function to launch services.

10 Service
terminator

A function to terminate services.

11 Service Failure
Detection and
Procedure
module

The module with the ability to detect failure in system and
provide the procedure like restoring or storing logs.

12 System Logging
Support module

The module to leave a log in a specified location in the IVI
system when a request to leave a log is received.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 8 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

13 Backup Data
Management
module

The module with the ability to store data permanently in the
IVI system.

14 Vehicle
Parameter
Configuration
module

The module with the ability to provide necessary information
in response to a request from a service to acquire necessary
environmental variables, or to determine whether an IVI
product supports various functions and return the results to
the service.

15 CAN
communication
module

The module for CAN data processing between other ECUs
and applications.

16 GPS Global(Satellite) Positioning System

17 Sensor data Gyroscope, Accelerometer, Speed pulse, vehicle reverse
info, etc.

18 GPS and
Sensor
Communication
module

The module with the ability to get and send GPS data or
Sensor data to necessary applications.

　 　

4. Use cases and Functional requirements
4.1. Power State Management

4.1.1. Abstraction

A requirement of IVI systems is that they need to support transitions to multiple power
states. Not just a simple power off/on state, but several other types of power states are
required. In each power state, it is necessary to switch the function to be controlled and
the power state of connected devices.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 9 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Due to the diversity of use cases in modern automotive, it is necessary for IVI systems
to operate even in situations where there is no voltage supplied by the battery. A
problem inherent to IVI is the limited power supplied by the battery. If you always start
and maintain any hardware in the state, it will lead to battery failure. Therefore, when
using IVI, it is necessary to define the various power states according to the use case of
each user, and in each power state, activate the minimum amount of hardware
necessary to realize the use case and realize the function.

The IVI receives power state transition requests from the vehicle (hardware) side,
notifies these requests to the various services, and performs state transitions. In this 4.4
section, the use cases involving power state transitions, the functional requirements for
realizing those use cases, and the functions of the Basesystem as a sample
implementation are described.

The description of Hardware in 4.4 section indicates some kind of hardware (such as
CAN signal) that notifies the IVI side of power state transition.
　

Figure 4

4.1.2. Use cases

In the Table 5, use cases which need the Power State Management function are
described. In each use case, the transition of the car's power state is changed, and the
IVI should be changed its state accordingly.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 10 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Table 5

Item Description

UC.PS.1 IVI(quick)
startup

The driver opens the door and gets into the car. And the
user presses the button for ACC-ON and the car and the
IVI is turned on.

UC.PS.2 IVI
shutdown

The driver presses the button for ACC-OFF, gets out of
the car and does not get into the car for a long time.

UC.PS.3 Startup
unlinked
with the
ACC

The driver presses a button for IVI-ON and uses audio,
video, and communication services without ACC-ON.

UC.PS.4 Delayed
ending

After arrival at the destination, when the driver wants to
continue a handsfree call after ACC-OFF, the user
continues it although the display is off.

UC.PS.5 Remote
parking
system

When the driver wants to get the car out of the parking
lot, the driver uses the smartphone-linked function to
control outside and gets into the car.

UC.PS.6 Demotion
assistance

After the driver arrives at the destination, the driver
presses the button for ACC-OFF and gets out of the car.
When the driver gets out of the car, if there is danger
behind the car, an alarm sounds and the driver is notified.

UC.PS.7 Return to
the car
soon

The driver presses the button for ACC-OFF, gets out of
the car and gets into the car soon.

UC.PS.8 Return to
the car
temporally

The driver opens the door and takes out the luggage. The
driver closes the door and does not get into the car.

UC.PS.9 Automatic
updates via
OTA

IVI automatically updates software through OTA function
while the driver is away from the car.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 11 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

UC.PS.10 Data
backup

IVI performs data backup while the driver is away from
the car.

In Production Readiness, the power state transition of IVI in general is defined as
follows.

1. The state of IVI power off(Power-off)
2. The state which is ready to boot IVI(Ready)
3. The state which the part of IVI features can be used(Partially running)
4. The state which IVI has started(Running)

Although the four states are considered necessary for product use cases, the 2 and 3
states depend on the requirements of each OEM.

The following table is a description of the above four states.

Table 6

IVI power
state

Description of each state

ST.PS.1 Power-off This is the state in which the IVI system is turned off and the
IVI display is turned off.

ST.PS.2 Ready This is the state in which the IVI system is turned on and the
IVI display is turned off.
The IVI system prepares selected services so that the IVI
system can provide user functions quickly when the IVI is
turned on.
※When starting a car with IVI unprepared, it takes a lot of
time. Therefore, the “Ready” status is necessary.

ST.PS.3 Partially
running

This is the state in which the IVI system is turned on. When
transitioning to this state from any other state, the IVI system
will be able to use the selected services for a while. (There is

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 12 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

no specific mention of turning the IVI display off/on. It shall be
dependent on implementation.)

ST.PS.4 Running This is the state in which the IVI system is turned on and the
IVI display is turned on. The ACC is on and all of the functions
can be used.

The following shows the IVI state transition diagram of the above table. The conditions
for each transition are also described.

Figure 7) State transition diagram

When the power status of the vehicle changes, the power status of the IVI will transition.
The cause of the change in the vehicle power state depends on the vehicle signal, CAN
signal, vehicle system, etc. Therefore, the required state/transition may be different
depending on the product and hardware requirements of each OEM. However, the
above state transition diagram shows the state that realizes the use cases defined in
this document. Each OEM should add or delete state/transition as necessary.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 13 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Table 8

Use case State
transition
diagram

The condition of transition

(1)IVI
(quick)
startup

(A), (B) (A)The transition request to change the selected services
states to “Ready” is sent from the Hardware side.
(B)The transition request to change the IVI state to
“Running” is sent from the Hardware side.

(2)IVI
shutdown

(C), (E) (C)The transition request to change the IVI state to
“Power-off” is sent from the Hardware side.
(E)When no transition request is received and a certain
amount of time has passed, the state is changed.

(3)Startup
unlinked
with the
ACC

(A), (F) (A)The transition request to change the selected services
states to “Ready” is sent from the Hardware side.
(F)The transition request to change the selected services
states to “Partially Running” is sent from pressing a button
for IVI-ON.

(4)Delaye
d ending

(C) (C)When the transition request to change the IVI state to
“Power-off” is sent from the Hardware side, the state goes
through “Partially running” once. If there is a request to
execute the function, it is done in this state.

(5)Remote
parking
system

(A), (F) (A)The transition request to change the selected services
states to “Ready” is sent from the Hardware side.
(F)The transition request to change the selected services
states to “Partially Running” is sent from the user’s
smartphone.

(6)Demoti
on
assistance

(C) (C)When the transition request to change the IVI state to
“Power-off” is sent from the Hardware side, the state goes
through “Partially running” once. If there is a request to
execute the function, it is done in this state.

(7)Return
to the car
soon

(C), (D) (C)The transition request to change the IVI state to
“Power-off” is sent from the Hardware side.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 14 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

(D)The transition request to change the IVI state to Running
is sent from the Hardware side.

(8)Return
to the car
temporally

(A), (G) (A)The transition request to change the selected services
states to “Ready” is sent from the Hardware side.
(G)When no transition request is received and a certain
amount of time has passed, the state is changed.

(9)Automa
tic updates
via OTA

(A), (F),
(E)

(A)The transition request to change the selected services
states to “Ready” is sent from the Hardware side.
(F)The transition request to change the selected services
states to “Partially Running” is sent from pressing a button
for IVI-ON.
(E)When no transition request is received and a certain
amount of time has passed, the state is changed.

(10)Data
backup

(A), (F),
(E)

(A)The transition request to change the selected services
states to “Ready” is sent from the Hardware side.
(F)The transition request to change the selected services
states to “Partially Running” is sent from pressing a button
for IVI-ON.
(E)When no transition request is received and a certain
amount of time has passed, the state is changed.

4.1.3. Functional Requirements

The Table 9 includes the functional requirements of Power State Management module.

Table 9

Item Related use
case

Description

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 15 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

FR.PS.1 Power
state
receiving

All of the use
cases

Power State Management should receive
state transition requests from the Hardware
side.

FR.PS.2 The incoming trigger of the power state
depends on each OEM so the incoming
trigger should be flexible enough to change.

FR.PS.3 Power
state
sending

Power State Management should notify the
power state change request to each service.

FR.PS.4 Since the number(definition) of power states
depends on each OEM, adding or removing
power states should be flexible enough to
change.

FR.PS.5 Only services which require control by power
state change requests should be notified of
the necessary request.

FR.PS.6 Device
control

According to the power state transition, each
application or middleware related to services
should switch the function to activate or the
control devices.

4.1.4. Power State Management in Basesystem
4.1.4.1. Reference implementation by Basesystem

In the implementation of Basesystem, the function modules for Power Service
Management are Power Service and System Manager. The software configuration
diagram is shown in Figure 2. As shown in Figure 10, Power service provides functions
such as notifying System manager of power state transition requests by getting the
notification from the hardware side. In order to control the system according to the
power state transition request, System manager notifies the services of a power state
transition received from Power service.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 16 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Figure 10

4.1.4.1.1. Power Service

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/power_service;h=fabcbf6aabbf0b7dd8a1df2fb35491029a2d1fdd;hb=refs/head
s/master

4.1.4.1.2. System Manager

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/system_manager;hb=refs/heads/master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 17 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/power_service;h=fabcbf6aabbf0b7dd8a1df2fb35491029a2d1fdd;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/power_service;h=fabcbf6aabbf0b7dd8a1df2fb35491029a2d1fdd;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/power_service;h=fabcbf6aabbf0b7dd8a1df2fb35491029a2d1fdd;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/system_manager;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/system_manager;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.2. Service Launch and Termination
4.2.1. Abstraction

IVI realizes its functions through coordination of multiple services. Since resources such
as CPU and memory are finite, it is necessary to launch and terminate specific services
depending on the use case, rather than always launching and terminating all services.

There are two main triggers for launching services(Figure11): the first is when any IVI
service is required to launch along with a power state transition(ⅰ), and the second is
when the application is launched and the service is requested to be launched along with
the application launch(ⅱ). When the service launcher receives information from each of
these triggers, it will make a launch request to the required service.

Similarly, there are two main triggers for terminating services: the first is when any IVI
service is required to terminate along with a power state transition, and the second is
when the application terminates and the service is no longer needed (implementation
depends on each company).

This chapter describes the use cases with launching and terminating services, the
functional requirements to realize the use cases, and the current Basesystem design
and implementation as a reference.

Figure 11) The trigger of launch service

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 18 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

　　　　

4.2.2. Use cases

In the Table 12, use cases which need the System Launch and Termination module for
services are described.

Table 12

Item Description

UC.LT.1 Service launch
with power state
transition

There are multiple use cases accompanied by service
launch.

● The driver presses the button for ACC-ON, the
IVI starts and the home screen is launched (the
services required to launch the home screen are
launched when the IVI starts).

● IVI automatically updates software through OTA
function while the driver is away from the vehicle.

● IVI backs up data while the driver is away from
the vehicle, etc.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 19 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

UC.LT.2 Service launch
when using
application

The driver uses the navigation application and sets the
destination. The user starts the application, enters the
destination, and the time required and route are
displayed.

UC.LT.3 The launch order
of previously
used service

When the driver starts up the system, the driver uses
the services that were running when the system was
last stopped before any other services.

UC.LT.4 Service
termination after
finishing
application

The driver makes a hands-free phone call while driving
the car. After the user finishes the call, the service that
is no longer needed is also terminated by being
requested.

UC.LT.5 Service
termination with
power state
transition

There are multiple use cases accompanied by service
termination.

● The driver arrives at the destination and stops
the car. The IVI system stops and the activated
services are terminated.

● After arrival at the destination, when the driver
wants to continue a handsfree call after
ACC-OFF, the user continues it although the
display is off.

● After the driver arrives at the destination, the
driver presses the button for ACC-OFF and gets
out of the car. When the driver gets out of the
car, if there is danger behind the car, an alarm
sounds and the driver is notified, etc.

UC.LT.6 The order of
service
termination

The driver arrives at the destination and stops the car.
When the driver presses the button for ACC-OFF, the
system will exit with a log of the user's system usage at
the end.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 20 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.2.3. Functional Requirements

The Table 13 includes the functional requirements of the Services Launch and
Termination module.

Table 13

Item Related
use
case

Description

RQ.LT.1 Service
launch

UC.LT.1 Service launcher shall send launch requests to the
required services according to the power state
transition requests.

RQ.LT.2 UC.LT.1 Service launcher shall allow the configuration of
which IVI services to launch.

RQ.LT.3 UC.LT.1 The order of the necessary services shall be
configurable.

RQ.LT.4 UC.LT.2 Service launcher shall send launch request to the
necessary services along with application launch.

RQ.LT.5 UC.LT.3 Services that were running when the system was
last shut down shall be launched in priority.

RQ.LT.6 Service
termination

UC.LT.4 Service terminator shall send a termination
request to the service that provided functionality to
the application when the application is no longer in
use and there is a request to terminate the service.

RQ.LT.7 UC.LT.5 Service terminator shall send a termination
request to the necessary service according to a
power state transition request.

RQ.LT.8 UC.LT.6 Service terminator shall be able to set the order in
which services are terminated during system
shutdown.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 21 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.2.4. Service Launch and Termination in Basesystem
4.2.4.1. Reference implementation in Basesystem

In the implementation of Basesystem, the function modules for launching and
terminating resident services and non-resident services are separated. In Basesystem
implementation, System manager launches and terminates resident services and Task
manager launches and terminates non-resident services. As shown in the following
figure 14, the Service launcher corresponds to (i) Systemmanager and (ii) Task
manager for each trigger in the Basesystem module. (i) When IVI starts, System
manager launches services according to the configured order. It needs to be launched
first in the IVI system and it is responsible for launching and terminating other services.
When IVI shuts down, it terminates the services in the order according to the settings in
the same way as at startup. (ii) Task manager launches and terminates the non-resident
service.This function is provided as a process and launched by System manager. Task
manager provides the service launch interface to HMI application and launches the
service if requested. Task manager monitors the running status of the launched service,
and if it detects a hang-up, it forcibly terminates the service.

Figure 14

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 22 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.2.4.1.1. System manager

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/system_manager;hb=refs/heads/master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 23 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/system_manager;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/system_manager;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.2.4.1.2. Task manager

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/task_manager;h=0d795ded146125a0f28b363e8e0821210d1be209;hb=refs/h
eads/master

4.3. System Failure Detection and Procedures
4.3.1. Abstraction

If the IVI system should detect some kind of failure and determine that the system can
no longer maintain normal state, simply rebooting the system and waiting for it to
recover is not enough in terms of convenience and safety for users. This is because
freezing the screen for a few seconds while driving and just waiting for the system to
reboot can cause a very dangerous situation for the user.

Therefore, when the IVI system detects such failure, a recovery procedure needs to be
performed. For example, restarting the service that caused the problem, or restarting
the entire system. They will prevent the system from continuing in an abnormal state
and minimize the negative impact on users.

The following figure shows the roles of the modules that perform detection when a
failure is detected and the data flow diagram. Figure 15 shows a case where a failure
such as a service hang-up occurs, and Figure 16 shows a case where a failure such as
a shortage of resources such as memory occurs. In the IVI system, each service in the
IVI system needs to be monitored by heartbeat communication, etc. The Detector
monitors the service and when it detects a failure, it notifies the service launcher of the
information and sends a request to the service to restart or to restart the entire IVI
system to bring the system back to a normal state. System resources(in this case,

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 24 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/task_manager;h=0d795ded146125a0f28b363e8e0821210d1be209;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/task_manager;h=0d795ded146125a0f28b363e8e0821210d1be209;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/task_manager;h=0d795ded146125a0f28b363e8e0821210d1be209;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Memory, CPU, and GPU) need to be monitored as well. If the Detector monitors the
resources and detects a failure, it will take the same steps to recover.

This chapter describes the use cases with failure detection service, the functional
requirements to realize the use cases, and the current Basesystem design and
implementation as a reference.

Figure 15

Figure 16

4.3.2. Use cases

In the Table 17, use cases which need System Failure Detection and Procedure when
the driver or passenger operates the IVI system are described.

The use cases UC.FD.1 to UC.FD.4 are for the passenger to face the navigation app
failures, and UC.FD.5 is for OEM to analyze the failure at a service station later.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 25 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Table 17

Item Description

UC.FD.1 Service failure at
System startup

The passenger is not able to see the map image
on the screen, e.g. the map service cannot be
activated.

UC.FD.2 Service failure when
System is in use

The passenger is not able to see the map image
on the screen due to the route calculation,
guidance services, etc. not responding.

UC.FD.3 System memory
shortage detection

The map image on the screen has freezed and
not been updated due to a shortage of system
memory.

UC.FD.4 CPU/GPU high load
detection

The navigation map app does not respond in
expected time and shows intermittent image
updates due to very high work-load of system
resources.

UC.FD.5 CPU/GPU usage log In case of poor usability, i.e. intermittent screen
updates, the IVI system resource information is
recorded for OEM to analyze the issues later.

4.3.2.1. Functional Requirements

The Table 18 includes the functional requirements of Service Failure Detection and
Procedure module. It is assumed that the targets of failure detection are Services,
system memory resources, CPU work-load, GPU work-load.

Table 18

Item Related
use case

Description

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 26 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

RQ.FD.1 Service
failure
detection

UC.FD.1,
UC.FD.2

The detector shall monitor IVI service health
status. If an IVI service does not respond, it
shall be recognized the service is in failure
status.

RQ.FD.2 Timeout
parameter
for service
monitoring

UC.FD.1,
UC.FD.2

The timeout parameter shall be configurable
for the detector to wait for the response from
an IVI service.

RQ.FD.3 Frequency
for service
monitoring

UC.FD.1,
UC.FD.2

The frequency with which the Detector checks
the service should be configurable.

RQ.FD.4 Memory
failure
detection

UC.FD.3 The detector shall decide the system is in
failure status if the system memory
consumption exceeds the threshold for the
specified periods.

RQ.FD.5 CPU / GPU
failure
detection

UC.FD.4, The detector shall decide the system is in
failure status if the GPU work-load exceeds the
threshold for the specified periods.

RQ.FD.6 Resource
failure
detection
periods for
Memory /
CPU / GPU
usage

UC.FD.3,
UC.FD.4

The periods to detect the system resource
failure in RQ.FD.3 and RQ.FD.4 shall be
configurable.

RQ.FD.7 System/servi
ce recovery

UC.FD.1,
UC.FD.2,
UC.FD.3,
UC.FD.4

In case of RQ.FD.1, the detector shall perform
the system/service recovery operation, if it
detects any system failure.

RQ.FD.8 Logging of
failure

UC.FD.5 The detector shall record the diagnostic
information, e.g. process information, if it
detects CPU/GPU resource failure.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 27 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

RQ.FD.9 Immediate
service
shutdown

UC.FD.1,
UC.FD.2,
UC.FD.3,
UC.FD.4

The detector shall notify immediate shutdown
of the failure service to the terminator if it
detects any service failure.

4.3.3. Service Failure detection in Basesystem
4.3.3.1. Reference implementation in Basesystem

In the implementation of Basesystem, the function modules for Service Failure detection
are System manager and Resource manager.

When System manager detects failures on services, it executes the various failure
procedure. The contents of the failure procedure are statically prescribed in the
Configuration file in advance. The prescribed ones are the system restart and the restart
the process in which the failure occured.

System manager monitors the system memory in cooperation with Resource manager.
If a notification is received from Resource manager, it recognizes the system memory
shortage and resets the system.

The following sequence diagram(Figure 19) shows the sequence of events when a
failure occurs in the system as a sample.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 28 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Figure 19

Resource manager is a function that checks the status of the CPU and keeps a log of
the high-level processes occupying the CPU if the high-load status continues for a
certain period of time. It also checks the status of memory, and if the residual memory
gets lower than a certain level, it determines it to be an abnormal state and notifies the
System manager.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 29 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

The following sequence diagram (Figure 19) shows, as a sample, the sequence of
events when a memory or CPU failure occurs.

Figure 20

4.3.3.2. System manager

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/system_manager;hb=refs/heads/master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 30 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/system_manager;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/system_manager;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.3.3.3. Resource manager

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/resource_manager;h=ab341007c7257d839fb6b91b02444675b9de6d60;hb=re
fs/heads/master

4.4. System Logging Support
4.4.1. Abstraction

Log and diagnostics information is very important to check the system health condition
and analyze potential and already observed issues. As a way of logging, printf() style
easy approach to put logging messages can be convenient for developers, however the
console is usually not available. Therefore, how and where to save the log need to be
considered.

Depending on the use cases to output, collect and analyze log information, it is
necessary to prioritize the log-levels. Critical error information must be recorded and
shall not be overwritten by the limited log storage on the IVI system. Information such as
service or messages may be useful for developers to analyze problems.

This chapter describes the use cases with System Logging Support(the function of
logging as described above), the functional requirements for realizing the use cases,
and the functions of the Basesystem that can be used as a sample implementation.

4.4.2. Use cases

In the Table 21, use cases which need System Logging Support module are described.

Table 21

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 31 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/resource_manager;h=ab341007c7257d839fb6b91b02444675b9de6d60;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/resource_manager;h=ab341007c7257d839fb6b91b02444675b9de6d60;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/resource_manager;h=ab341007c7257d839fb6b91b02444675b9de6d60;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Item Description

UC.LS.1 Check logs during
development

The developers (OEM/Supplier) check and evaluate
the logs by each function (application) when
implementing the product software.

UC.LS.2 Check logs of
already used
products

In order to investigate the status and problems of used
products, OEM analyze the stored logs by each
function (application).

4.4.3. Functional Requirements

The Table 22 includes the functional requirements of System Logging Support module.

Table 22

Item Related
use case

Description

RQ.LS.1 Log save UC.LS.2 The System Logging Support module shall
preserve any recorded log messages even
through system startup/shutdown lifecycle.

RQ.LS.2 UC.LS.1,
UC.LS.2

The storage of logs shall be able to be
configurable(e.g. The log storage device,
directory or cloud).

RQ.LS.3 UC.LS.1,
UC.LS.2

The logs shall be compressed when they are
saved.

RQ.LS.4 The setting
of log
messages

UC.LS.1,
UC.LS.2

Log messages should have several levels
depending on their importance. For example, the
following.

● Error: Information when some errors
happen

● Info: Information which is not error

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 32 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

● Debug: Information needed when debug
for development

RQ.LS.5 UC.LS.1,
UC.LS.2

The log-level of the log messages shall be
configurable.

RQ.LS.6 UC.LS.1,
UC.LS.2

The log messages shall be categorized
according to the functionalities or domains.

RQ.LS.7 UC.LS.1,
UC.LS.2

The System Logging Support module shall
record the timestamp of the log messages.

RQ.LS.8 UC.LS.1,
UC.LS.2

The System Logging Support module shall not
overwrite any critical log information, e.g.
information on possible reasons to restart the
system, even though the system log storage is
full.

RQ.LS.9 Storage
memory

UC.LS.1,
UC.LS.2

The System Logging Support module shall
minimize actual write operations to the storage
device to make the lifetime as long as possible.

4.4.4. System Logging Support in Basesystem
4.4.4.1. Reference implementation in Basesystem

In the implementation of Basesystem, the function module for System Logging Support
is partially covered by Logger Service and Framework Unified.

Logger Service does not create logs by itself, but rather collects and archives the logs
left by other modules when there is a request to save them in the system. As shown in
Fig. 24, for example, when the ACC is turned off(ⅰ), the system manager notifies the
Logger Service of this information, and the Logger Service collects the logs from other
modules covering the period from system startup to shutdown, and stores them in the
storage. When an failure occurs in the system(ⅱ), it is another trigger for logging, and
the Logger Service stores the log by receiving the request. The logs are stored in the

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 33 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

volatile area on a regular basis, but when the capacity becomes full, they are stored in
the non-volatile area. Framework Unified is responsible for outputting the logs. Upon
request from the required service, a log level is specified and the log is output to a
buffer(ⅲ). Logging levels include typical definitions such as Info, Warning, and Error,
and additional levels can be set optionally by the user. These functions are the role of
System Logging Support.

Figure 24

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 34 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.4.4.1.1. Logger Service

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/system/logger_service;h=3b33fe43aa5914210ac1e3e485d118a9d8d103bd;hb=refs/h
eads/master

4.4.4.1.2. Framework Unified

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/native/framework_unified;h=a1c0913dabd4d65c6c2d4dd90646e20ea9977ffe;hb=refs/
heads/master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 35 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/logger_service;h=3b33fe43aa5914210ac1e3e485d118a9d8d103bd;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/logger_service;h=3b33fe43aa5914210ac1e3e485d118a9d8d103bd;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/system/logger_service;h=3b33fe43aa5914210ac1e3e485d118a9d8d103bd;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/native/framework_unified;h=a1c0913dabd4d65c6c2d4dd90646e20ea9977ffe;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/native/framework_unified;h=a1c0913dabd4d65c6c2d4dd90646e20ea9977ffe;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/native/framework_unified;h=a1c0913dabd4d65c6c2d4dd90646e20ea9977ffe;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.5. Persistent Data Management
4.5.1. Abstraction

While the IVI system is running, user configuration data and IVI service operation data
are stored and maintained. Even though IVI is battery-powered which looks similar to
smartphones, electronic consumer devices, the power supply in IVI system can be
unstable at ACC-ON and ACC-OFF for the system startup/shutdown. Therefore, the
Persistent Data Management module must ensure that no persistent data is lost, no
persistent data is corrupted and the persistent data is consistent while the system
startup/shutdown lifecycle.

Another aspect on IVI system which is special rather than smartphone, electronic
consumer devices is a much longer product lifetime, and that means the storage device
must be available for a much longer time. So, in order to make the storage device
lifetime longer, data write operation shall not happen every time when applications
request. The Persistent Data Management module needs to handle the read/write
operation to the storage device at any given time.

This chapter describes the use cases with Persistent Data Management(the function as
described above), the functional requirements for realizing the use cases, and the
functions of the Basesystem that can be used as a sample implementation.

4.5.2. Use cases

In the Table 25, use cases which need the Persistent Data Management module for
services are described.

Table 25

Item Description

UC.BD.1 Data protection in
case of ACC-OFF

Even when the driver presses the button for
ACC-OFF or a sudden power failure occurs after

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 36 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

or sudden power
failure

changing the display settings of the IVI system, the
display settings are retained and the driver uses the
information.

UC.BD.2 Utilize the
persistent data

The driver searches for a destination using the search
history stored in the navigation application.

UC.BD.3 Data attribute
when the system
battery is
removed

Each OEM chooses whether to make each persistent
data stored in the IVI volatile or non-volatile when the
battery is removed, for handling the persistent data
after the battery is removed.

UC.BD.4 Data Initialization If a user reset the system, all data is deleted.

4.5.3. Functional Requirements

The Table 26 includes the functional requirements of Persistent Data Management
module. RQ.BD.1.1 and RQ.BD.1.2 are requirements realized by usual filesystem.
Others are newly defined.

Table 26

Item Related
use case

Description

RQ.BD.1.1 Data store in
case of
sudden
power off

UC.BD.1 The Persistent Data Management module
shall prevent “persistent” data loss if the
power supply is stopped.

RQ.BD.1.2 Data store of
system
lifecycle

UC.BD.1 IVI system shall preserve any "persistent"
data requested by IVI services/apps through
system startup/shutdown lifecycle.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 37 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

RQ.BD.2.1 Storage
memory
requirement

UC.BD.1 The Persistent Data Management module
shall minimize actual write operations to the
storage device to make the lifetime as long
as possible.

RQ.BD.2.2 Utilization of
Persistent
data

UC.BD.2 The data which needs to be read shall be
readable by request from IVI services/apps.

RQ.BD.2.3 Data handling
when the
battery is
removed.

UC.BD.3 Data shall be configurable to be kept or not
when the battery is removed.

RQ.BD.2.4 Data
Verification

UC.BD.2 The Persistent Data Management module
shall detect the stored data corruption and
provide alternative correct data.

RQ.BD.2.5 Data deletion UC.BD.4 The data shall be deleted by request from
IVI services/apps.

4.5.4. Persistent Data Management in Basesystem
4.5.4.1. Reference implementation in Basesystem

In the implementation of Basesystem, the function module for Persistent Data
Management is Backup Manager.

As shown in the following figure 27, for example when a driver uses an application and
a data backup request occurs, on receiving the request, Backup Manager writes the
data to the specified storage with the specified offset and data size based on the timing
defined in the Configuration(ⅰ). When reading the data, Backup manager reads the
data from the specified storage and sends it back to the application side(ⅱ). Backup
Manager has responsible to provide those features. It will manage not only access to
the persistent data for applications but also verify the underlying persistent data
consistency in order to detect the data corruption so that alternative correct data can be
provided. It also can delete part of the persistent data upon the requests from
applications.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 38 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Figure 27

4.5.4.1.1. Backup manager

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/native/backup_manager;h=2a9382f9cbf84a8a2f3e1cb4602a693f44bd37d7;hb=refs/he
ads/master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 39 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/native/backup_manager;h=2a9382f9cbf84a8a2f3e1cb4602a693f44bd37d7;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/native/backup_manager;h=2a9382f9cbf84a8a2f3e1cb4602a693f44bd37d7;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/native/backup_manager;h=2a9382f9cbf84a8a2f3e1cb4602a693f44bd37d7;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.6. Vehicle Parameter Configuration
4.6.1. Abstraction

IVI system requires software that is designed to meet a variety of needs and
requirements. These needs and requirements vary depending on the country where it is
used. In addition, OEMs want to provide multiple models and grades of vehicle, but
their requirements also vary. In order to prevent huge numbers of IVI system software
branching, a configuration mechanism is needed to cover several options without
changing the program. This will be accomplished with this Vehicle Parameter
Configuration. The information obtained from this function will allow, for example, the IVI
system to set the required language for different countries and to select the Audio AMP
that the product supports. In addition, based on the vehicle parameter, it determines if
the vehicle is compatible with OEM-specific or country-specific features and returns it to
the service.

This chapter describes the use cases with Vehicle Parameter Configuration, the
functional requirements for realizing the use cases, and the functions of the Basesystem
that can be used as a sample implementation.

4.6.2. Use cases

In the Table 28, use cases which need the Vehicle Parameter Configuration module for
services are described.

Table 28

Item Description

UC.VP.1 Vehicle parameter
setting before
shipment

Before the product is shipped from the factory, each
OEM/Supplier writes the configuration values into the
product depending on the needs and requirements of
the product without changing the software.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 40 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

UC.VP.2 Function check When the driver presses the button for ACC-ON and
the IVI system is started, the system obtains
information on which functions the product supports
from the vehicle parameter that has been set.
For example, functions specific to communication
standards, devices, applications, etc. are
enabled/disabled based on the vehicle parameter.

4.6.3. Function Requirements

The Table 29 includes the functional requirements of Vehicle Parameter Configuration
module.

Table 29

Item Related
use case

Description

RQ.VP.1 Vehicle
parameter
setting

UC.VP.1 This function shall provide at least the
following information as vehicle parameters

● Country / Region
● Vehicle type/brand
● Vehicle signal acquisition method

(e.g.CAN or direct)

RQ.VP.2 Acquisition of
vehicle
parameter

UC.VP.1 If a request is received from a service that
requires a vehicle parameter, Vehicle
Parameter Configuration module shall
provide the necessary information.

RQ.VP.3 Function check UC.VP.2 Vehicle Parameter Configuration module
determines information on whether the
product supports various specific functions
and returns whether the functions can be
used or not.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 41 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.6.4. Vehicle Parameter Configuration in Basesystem
4.6.4.1. Reference implementation in Basesystem

In the implementation of Basesystem, the function module for Vehicle Parameter
Support is Vehicle Parameter Library.

In the implementation of Basesystem, it is assumed that the vehicle parameter
information is stored and set in the IVI system as the configuration file. A service
specifies the vehicle parameter information to acquire and sends a request to Vehicle
Parameter Library, and Vehicle Parameter Library reads the data from the configuration
file of vehicle parameter and stores it in the specified address.If the value of the
specified variable is not set in the vehicle parameter's configuration file, 0 is returned.

In addition, when the service sends a request to the Vehicle Parameter Library to obtain
information on whether the product supports various functions (communication
standards, devices, applications, etc.), the Vehicle Parameter Library returns the result
of enabled, disabled, or function not existing.

4.6.4.2. Vehicle Parameter Library

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/other/vehicle_parameter_library;h=021a98c97e1a4ab0402595da3f6c4db6e34fd5ba;h
b=refs/heads/master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 42 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/other/vehicle_parameter_library;h=021a98c97e1a4ab0402595da3f6c4db6e34fd5ba;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/other/vehicle_parameter_library;h=021a98c97e1a4ab0402595da3f6c4db6e34fd5ba;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/other/vehicle_parameter_library;h=021a98c97e1a4ab0402595da3f6c4db6e34fd5ba;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.7. CAN Communication
4.7.1. Abstraction

CAN is the most major communication bus among ECUs in-vehicle systems. It is
sufficient and reliable to obtain vehicle information such as speed data and HVAC
control commands.

Linux has SocketCAN implementation for CAN communication to utilize the popular
Berkley socket API. However, on an IVI system, it is expected that a communication
function will be provided to meet the following requirements.

● The IVI platform needs to notify CAN data from other ECUs or from external
sources to the necessary applications which request to receive the CAN data.

● The IVI platform needs to monitor the periodic reception of CAN data from
external sources and to notify the availability of delivery

For these reasons, it is necessary to define a communication function for handling CAN
data.

This chapter describes the use cases with CAN Communication function, the functional
requirements for realizing the use cases, and the functions of the Basesystem that can
be used as a sample implementation.

4.7.2. Use cases

In the Table 30, use cases which need GPS and Vehicle Sensor Communication
module are described.

Table 30

Item Description

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 43 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

UC.CC.1 CAN data send
from application
to other ECU

When the user presses the button to lower the
temperature of the air conditioner, a request is sent to
the ECU that controls the temperature of the air
conditioner. This causes cold air to come out to lower
the interior temperature.

UC.CC.2 CAN data
distribution to
registered
application

IVI system receives the signal data of the steering
sensor via CAN bus, when a user is driving the car to
park with the gear set reverse checking the predicted
trajectory line on the Back-guide monitor.

UC.CC.3 Detect
suspension and
resume

The CAN communication module receives the CAN
data and notifies the registered destination of the
data. If the required data is not received for a certain
period of time, an unreceived event is sent to the
destination, and if the data is received, the destination
is notified of the data.

4.7.3. Function Requirements

The Table 31 includes the functional requirements of CAN Communication module.

Table 31

Item Related
use case

Description

RQ.CC.1 Utilization of
the function
from the
application

UC.CC.1 CAN Communication module shall receive
the CAN data send request from the
application.

RQ.CC.2 CAN data
distribution
registration

UC.CC.2 CAN Communication module shall be able
to register the distribution of applications
that want to receive CAN data.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 44 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

RQ.CC.3 UC.CC.2 CAN Communication module shall send
CAN data to the registered application.

RQ.CC.4 Detect
suspension

UC.CC.3 CAN Communication module shall notify the
registered delivery destination of not being
received if CAN data is not received within
the specified time.

RQ.CC.5 Resume after
suspension

UC.CC.3 In the case of RQ.CC.4 status, if CAN
Communication module receives CAN data,
it shall notify the registered application of
the CAN data.

4.7.4. CAN Communication in Basesystem
4.7.4.1. Reference implementation in Basesystem

In the Basesystem implementation, the functional module that performs CAN
communication is Communication. The CAN data flow based on UC.CC.1 and UC.CC.2
of the use case is illustrated in Figure 32. In the Basesystem implementation, the CAN
communication functions are implemented via the HAL, which is implemented to allow
data exchange independent of the device.

● Send CAN data received from the application to CAN HAL.
● Send CAN data received from CAN HAL to the registered applications.
● Monitor the CAN data communication suspension and notify the registered

applications of resume.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 45 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

Figure32

The contributed CAN HAL is a Stub with no implementation part, and if you want to use
the Communication module, you have to implement the HAL.

4.7.4.1.1. Communication

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/peripheral/communication;h=c618e7c98854a37d678da03828d4d516173d2b0f;hb=ref
s/heads/master

4.8. GPS and Sensor information
4.8.1. Abstraction

For IVI system, Positioning information is a very essential one as it is moving.
Positioning information includes a variety of information. For example, it includes the

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 46 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/peripheral/communication;h=c618e7c98854a37d678da03828d4d516173d2b0f;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/peripheral/communication;h=c618e7c98854a37d678da03828d4d516173d2b0f;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/peripheral/communication;h=c618e7c98854a37d678da03828d4d516173d2b0f;hb=refs/heads/master

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

vehicle's longitude and latitude position coordinates obtained from the GPS signal, as
well as the vehicle's direction, speed data. These information shall be provided by the
IVI platform. Additionally the IVI system has the most intelligent and powerful computing
resources ever and geographical information of map data. By acquiring and using
Sensor data such as gyroscopes, acceleration, and vehicle speed pulses, IVI platform is
expected to provide coordinated location information with dead reckoning navigation
and map matching to the required applications. With these backgrounds, IVI system
needs to provide functions that can provide GPS and Sensor data to necessary
applications.

This chapter describes the use cases with GPS and Sensor communication module, the
functional requirements for realizing the use cases, and the functions of the Basesystem
that can be used as a sample implementation.

4.8.2. Use cases

In the Table 33, use cases which need GPS and Sensor Communication module are
described.

Table 33

Item Description

UC.GS.1 Utilization of
current location
information

The driver uses the navigation application and sets
the destination. The user starts the application, enters
the destination, and the time required and route are
displayed.

UC.GS.2 Acquisition of
GPS time

IVI system obtains the GPS time and corrects the
display of the time on the IVI display screen. It can
also be used for other way as "expiration date" for
credentials by openssl or abs time of linux, etc. as
examples.

UC.GS.3 DeadReckoning A driver drives a car to a destination. If the driver
enters a tunnel or other place where it is difficult to
receive a signal and GPS information cannot be

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 47 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

obtained, the driver can use the Sensor information
obtained to position the car.

UC.GS.4 Retention of GPS
information

When the driver presses the button for ACC-OFF, the
IVI system retains the GPS information. When the
driver presses the button for ACC-ON, the current
location information will be displayed based on the
retained information.

4.8.3. Function Requirements

The Table 34 includes the functional requirements of GPS and Sensor Communication
module.

Figure 34

Item Related
use case

Description

RQ.GS.1 GPS and
Sensor data
distribution
registration

UC.GS.1,
UC.GS.2

GPS and Sensor communication module
shall be able to register the delivery of
GPS(including time) and Sensor data to the
application that wants to receive them.

RQ.GS.2 Utilization of
the function
from the
application

UC.GS.1,
UC.GS.2

GPS and Sensor communication module
shall send the necessary GPS(including
time) and Sensor data to the registered
applications.

RQ.GS.3 Acquisition of
GPS data and
Sensor data

US.GS.3 GPS and Sensor communication module
shall receive GPS and Sensor data
transmission requests from applications.
Dead Reckoning function is not provided by
this system, and needs to be implemented

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 48 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

separately. Since acquired GPS and Sensor
data, etc. are required, the data will be
provided when the request is sent from the
system owning Dead Reckoning function.

RQ.GS.4 Provision of
GPS data and
Sensor data

UC.GS.3 GPS and Sensor communication module
shall receive the GPS and Sensor data
transmission request from the application
and provide the necessary data.

RQ.GS.5 Retention of
GPS
information

UC.GS.4 GPS and Sensor communication module
retains GPS information when the ACC is
turned OFF from ON, and provides GPS
information when the ACC is turned ON.

4.8.4. GPS and Sensor information in Basesystem
4.8.4.1. Reference implementation in Basesystem

In the Basesystem implementation, the functional module that handles GPS and Sensor
data is Positioning. Positioning provides the following functions.

● Provide location information (longitude, latitude, altitude, heading) and speed
information to the required application/service.

● Provide GPS data and GPS time to required applications/services, and reset
GPS.

● Provide Sensor data (gyroscope, acceleration, vehicle speed pulse, vehicle
reverse information, etc.)

Application/Service requests GPS and Sensor data from Positioning, and returns the
information obtained from Vehicle.

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 49 -

Automotive Grade Linux (AGL) IVI Expert Group (EG-IVI)
The Production Readiness Profile Specification

4.8.4.1.1. Positioning

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=servic
e/vehicle/positioning;h=6573a2b89dc948502838480dcbaae18995f29fd4;hb=refs/heads/
master

The paper is licensed under a Creative Commons Attribution 4.0 International (CC BY-SA 4.0).
Copyright © 2021, Automotive Grade Linux.

- 50 -

https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/vehicle/positioning;h=6573a2b89dc948502838480dcbaae18995f29fd4;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/vehicle/positioning;h=6573a2b89dc948502838480dcbaae18995f29fd4;hb=refs/heads/master
https://gerrit.automotivelinux.org/gerrit/gitweb?p=staging/basesystem.git;a=tree;f=service/vehicle/positioning;h=6573a2b89dc948502838480dcbaae18995f29fd4;hb=refs/heads/master

