
z

Flutter
Deep Dive

Toyota Connected North America - UI/UX Team

Joel Winarske

z

Flutter

▪ Flutter is Google's UI toolkit for building beautiful, natively

compiled applications for mobile, web, desktop, and

embedded devices from a single codebase.

▪ Dart is a programming language designed for client

development, such as for the web and mobile apps.

▪ Skia is an open source 2D graphics library which provides

common APIs that work across a variety of hardware and

software platforms. Skia is used in the Chrome browser.

▪ Flutter is the combination of Dart + Skia.

z

Flutter Advantages

▪ Reduced Code Development Time

▪ Increased Time-to-Market Speed

▪ Similar to Native App Performance

▪ Same UI and Business Logic across All Platforms

▪ Custom, Animated UI of Any Complexity Available

▪ Own Rendering Engine

▪ BSD 3-Clause "New" or "Revised" License

▪ Non-Proprietary / Open Source

▪ Zero Licensing Fees

▪ Smaller RAM / ROM footprint than Browser based UI

▪ Hot Reload

z

Flutter Architecture

z

Flutter Engine

▪ The core of Flutter, which is mostly written in C++ and supports the primitives necessary to

support all Flutter applications. The engine is responsible for rasterizing composited scenes

whenever a new frame needs to be painted. It provides the low-level implementation of Flutter’s

core API, including graphics (through Skia), text layout, file and network I/O, accessibility support,

plugin architecture, and a Dart runtime and compile toolchain.

▪ The engine is exposed to the Flutter framework through dart:ui, which wraps the underlying C++

code in Dart classes. This library exposes the lowest-level primitives, such as classes for driving

input, graphics, and text rendering subsystems.

▪ https://github.com/flutter/engine

https://skia.org/
https://github.com/flutter/engine/tree/master/lib/ui
https://github.com/flutter/engine

z

Dart Framework

▪ Developers interact with Flutter through the Flutter Framework.

▪ A modern reactive framework written in the Dart language.

▪ The Flutter framework is relatively small; many higher-level features that developers might use are

implemented as packages, including platform plugins like camera and webview, as well as platform-agnostic

features like characters, http, and animations that build upon the core Dart and Flutter libraries. Some of

these packages come from the broader ecosystem, covering services like in-app payments, Apple

authentication, and animations.

https://pub.dev/packages/camera
https://pub.dev/packages/webview_flutter
https://pub.dev/packages/characters
https://pub.dev/packages/http
https://pub.dev/packages/animations
https://pub.dev/packages/square_in_app_payments
https://pub.dev/packages/sign_in_with_apple
https://pub.dev/packages/lottie

z

Dart Framework - continued

▪ It includes a rich set of platform, layout, and foundational libraries, composed of a series of layers.

▪ Basic foundational classes, and building block services such as animation, painting, and gestures that

offer commonly used abstractions over the underlying foundation.

▪ The rendering layer provides an abstraction for dealing with layout. With this layer, you can build a tree of

renderable objects. You can manipulate these objects dynamically, with the tree automatically updating the

layout to reflect your changes.

▪ The widgets layer is a composition abstraction. Each render object in the rendering layer has a

corresponding class in the widgets layer. In addition, the widgets layer allows you to define combinations of

classes that you can reuse. This is the layer at which the reactive programming model is introduced.

▪ The Material and Cupertino libraries offer comprehensive sets of controls that use the widget layer’s

composition primitives to implement the Material or iOS design languages.

▪ https://flutter.dev

https://api.flutter.dev/flutter/foundation/foundation-library.html
https://api.flutter.dev/flutter/animation/animation-library.html
https://api.flutter.dev/flutter/painting/painting-library.html
https://api.flutter.dev/flutter/gestures/gestures-library.html
https://api.flutter.dev/flutter/rendering/rendering-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/material/material-library.html
https://api.flutter.dev/flutter/cupertino/cupertino-library.html
https://flutter.dev

z

Embedder

▪ The embedder is written in a language that is appropriate for the platform.

▪ Currently Java and C++ for Android

▪ Objective-C/Objective-C++ for iOS and macOS

▪ C++ for Windows and Linux

▪ Flutter includes a number of embedders for common target platforms

▪ Generic Interface for communicating between Dart and Native code – Platform Channels

▪ Toyota Connected has a custom Embedder specific to Embedded Linux (Wayland) and

Automotive use cases

z

Flutter Versioning Semantics

▪ Flutter SDK: https://github.com/flutter/flutter

▪ Flutter engine: https://github.com/flutter/engine

▪ The SDK compiles Dart apps (using artifacts produced by engine build output)

▪ Both SDK & Engine have distinct versions

▪ For stability purposes, it's best to assume that apps compiled with a given SDK version MUST

be run by the engine version locked to the same SDK commit.

▪ This introduces a requirement that either:

▪ All Flutter apps running on a system must be compiled against the same SDK version, or

▪ The system must support packaging an app in a way that is strongly coupled to its

engine, and shipping an engine-per-app

https://github.com/flutter/flutter
https://github.com/flutter/engine

z

Flutter Channels & Stability

▪ https://github.com/flutter/flutter/wiki/Flutter-build-release-channels

▪ stable = quarterly releases

▪ beta* = monthly releases

▪ dev = as often as the full test suite passes

▪ master = tip of tree

* beta is currently our "default" channel for development purposes, with a balance of latest updates with good

stability, but this can be freely modified.

https://github.com/flutter/flutter/wiki/Flutter-build-release-channels

z

ivi-homescreen

▪ Flutter embedder specifically for Wayland

▪ Strongly Typed (C++)

▪ Lightweight

▪ Clang 11 Release Stripped = 151k

▪ GCC 9.3 Release Stripped = 168k

▪ Runs on Linux Desktop and Yocto Linux

▪ Ubuntu 18+

▪ Fedora 33+

▪ Yocto Dunfell+

▪ Platform Channels enabled/disabled via CMake

▪ OpenGL Texture Framework

▪ Hot Reload is functional

z

Developer Workflows

▪ Execute/Debug Application on Linux Desktop

▪ Developers are encouraged to use Linux Desktop for

Application Development

▪ CI validation – headless in cloud

▪ Establish perf and regression baselines using profile runs

▪ Execute/Debug Flutter Application on Target

▪ CI validation - board farm

▪ Establish perf and regression baselines using profile runs

z

Execute Application on Desktop

▪ Install ivi-homescreen and flutter-engine packages

▪ Build your flutter application using flutter build bundle

▪ cd ~/development/my_flutter_app

▪ flutter channel beta

▪ flutter upgrade

▪ flutter config --enable-linux-desktop

▪ flutter create .

▪ flutter build bundle

▪ Create application symlink in /usr/local/homescreen

▪ cd /usr/local/share/homescreen && sudo rm -rf bundle/

▪ sudo ln -sf ~/development/my_flutter_app/build/ bundle

▪ Run Flutter Application

▪ /usr/local/bin/homescreen

z

Debug Application on Desktop

▪ Follow steps under Execute Application on Desktop with

following exception

▪ Install flutter-engine “debug” package

▪ After Flutter embedder is running attach to process

▪ flutter attach --debug-port 41795 --host-vmservice-port

41795

▪ Hot Reload, Restart, etc. is available via console only

z

Create Ahead Of Time (AOT) image

▪ flutter build bundle

▪ dart ${ENGINE_SDK}/frontend_server.dart.snapshot --aot --tfa --

target=flutter --sdk-root ${ENGINE_SDK} --output-dill app.dill lib/main.dart

▪ ${ENGINE_SDK}/clang_x64/gen_snapshot --deterministic --

snapshot_kind=app-aot-elf --elf=libapp.so --strip app.dill

▪ Notes:

▪ Requires flutter-engine “Release” or "Profile" variant to run

▪ Desktop ENGINE_SDK=/usr/local/share/flutter/sdk

▪ Target ENGINE_SDK=/usr/share/flutter/sdk

▪ See integration example here: https://github.com/meta-flutter/meta-

flutter/blob/main/recipes-graphics/flutter-apps/flutter-gallery_git.bb

https://github.com/meta-flutter/meta-flutter/blob/main/recipes-graphics/flutter-apps/flutter-gallery_git.bb

z

Building with Yocto

▪ https://github.com/meta-flutter/meta-flutter

▪ Add meta-flutter and meta-clang layers

▪ At minimum append ivi-homescreen and flutter-engine to image.

▪ Common variables overridden in "local.conf"

▪ FLUTTER_CHANNEL. Generally good idea to set in local.conf.

▪ SRCREV_flutter-engine. Defaults to FLUTTER_CHANNEL value.

▪ TARGET_GCC_VERSION. Defaults to 9.3. If GCC version != 9.3 override

with value.

▪ For application use cases see meta-flutter CI validation jobs

▪ https://github.com/meta-flutter/meta-

flutter/blob/main/.github/workflows/ci.yml

https://github.com/meta-flutter/meta-flutter
https://github.com/meta-flutter/meta-flutter/blob/main/.github/workflows/ci.yml

z

AGL Build Example

▪ meta-flutter validation CI include AGL Lamprey build example

▪ https://github.com/meta-flutter/meta-

flutter/blob/main/.github/workflows/ci.yml#L222

http://metahttps:/github.com/meta-flutter/meta-flutter/blob/main/.github/workflows/ci.yml

z

Long Term Support

▪ Flutter SDK

▪ Flutter storage buckets for milestone releases

▪ https://storage.googleapis.com/flutter_infra/releases/releases_windows.json

▪ https://storage.googleapis.com/flutter_infra/releases/releases_macos.json

▪ https://storage.googleapis.com/flutter_infra/releases/releases_linux.json

▪ Flutter Engine

▪ What we need is a tar.xc of Engine source posted to match SDK

milestone releases. This request has been made to the Flutter

PM. This would follow the pattern of how Chromium archives

source.

▪ This would enable a dedicated Yocto recipe per LTS release,

eliminate use of gclient, and cache everything in DL folder.

https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fstorage.googleapis.com%2Fflutter_infra%2Freleases%2Freleases_windows.json&data=04%7C01%7Cjoel.winarske%40toyotaconnected.com%7C9156e34bd39a4051661708d988ddb05c%7Ce9310a1ce1b84c4ca69f6f28f308f7b2%7C0%7C0%7C637691309045172319%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3qJc0Xs%2B2uOuwhYyWSVkRJvpR0k7kVAfy%2FRWEHb0zm8%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fstorage.googleapis.com%2Fflutter_infra%2Freleases%2Freleases_macos.json&data=04%7C01%7Cjoel.winarske%40toyotaconnected.com%7C9156e34bd39a4051661708d988ddb05c%7Ce9310a1ce1b84c4ca69f6f28f308f7b2%7C0%7C0%7C637691309045182270%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=OxRjcFLGACh%2FJWAVyZlXcQWOfZdFqPwG%2BcIqQmMPQ%2FE%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fstorage.googleapis.com%2Fflutter_infra%2Freleases%2Freleases_linux.json&data=04%7C01%7Cjoel.winarske%40toyotaconnected.com%7C9156e34bd39a4051661708d988ddb05c%7Ce9310a1ce1b84c4ca69f6f28f308f7b2%7C0%7C0%7C637691309045192232%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=VW8cNtZHWtXxR9ZFInHLH93RzplkyZ073jNqSCTEqt4%3D&reserved=0

z

Flutter Gallery App on
AGL Emulator Image
▪ Ubuntu 20.04.3 LTS

▪ Download and extract "agl-image-weston-flutter-qemux86-64-linux" package
from:

https://github.com/meta-flutter/meta-flutter/actions/runs/1361062278

▪ Login to console

▪ # vi /etc/xdg/weston/weston.ini. Change transform to 0, and mode to

1920x720. "wq" to write and quit.

▪ # systemctl restart weston@root

▪ # homescreen

▪ https://docs.automotivelinux.org/en/master/#0_Getting_Started/1_Quickstart/
Using_Ready_Made_Images/#1-qemu-emulation

https://github.com/meta-flutter/meta-flutter/actions/runs/1361062278

z

Important Notes

▪ In order to run a Flutter application, the Flutter SDK Dart VM version must match
the Flutter Engine Dart VM version.

▪ You can check the Flutter Engine Dart VM version via:

▪ Desktop

▪ cat /usr/local/share/flutter/sdk/dart.version

▪ Target

▪ cat /usr/share/flutter/sdk/dart.version

▪ A flutter channel will roll or change commit hash periodically. The channels are
master, dev, beta, stable. The rate of change is greatest with the master channel,
where the beta channel rolls generally once a week.

▪ Flutter applications built by default are machine agnostic and run as interpreted
code.

▪ To achieve native run time performance, build your application for Ahead Of Time
(AOT). This compiles project into native machine code.

z

x86_64 binary packages

▪ ivi-homescreen

▪ https://github.com/toyota-connected/ivi-

homescreen/actions/runs/1251358078

▪ flutter-engine

▪ https://github.com/jwinarske/flutter_embedded/actions/runs/125997090

4

▪ Deployment to JArtifactory based Debian/RPM/Opkg repository,

including versioning and dependent packages planned. Possibly

an alternative that is hosted on AGL site?

https://github.com/toyota-connected/ivi-homescreen/actions/runs/1251358078
https://github.com/jwinarske/flutter_embedded/actions/runs/1259970904

z

Repositories

▪ https://github.com/toyota-connected/ivi-homescreen

▪ Linux Flutter Embedder

▪ https://github.com/meta-flutter/meta-flutter

▪ Yocto layer for embedded Flutter

▪ includes recipes for flutter-engine and ivi-homescreen

▪ https://github.com/jwinarske/flutter_embedded

▪ X86_64 Debian, RPM, tar.gz package of libflutter_engine.so

▪ Runtime – debug, profile, release

▪ https://github.com/jwinarske/flutter-channel-watch

▪ Checks flutter channel every 15 minutes for a change in commit

▪ Used to trigger flutter-engine builds

https://github.com/toyota-connected/ivi-homescreen
https://github.com/meta-flutterjwinarske/meta-flutter
https://github.com/jwinarske/flutter_embedded
https://github.com/jwinarske/flutter-channel-watch

z

Planned/Active Work

▪ Open Source AGL integration

▪ Full featured homescreen

▪ v2 ivi-homescreen

▪ Vulkan Based

▪ 3D Rendering engine integration

▪ Flutter Engine renders to RenderTarget of type

vkImage

z

Why Vulkan in v2?

▪ https://flutter.dev/go/embedder-vulkan-support

▪ Mixed compatibility with EGL

▪ Higher performance (better advantage of parallelism)

▪ Better inter-operability with 3d scenes

▪ In the future we plan to

integrate https://github.com/google/filament as a 3D

plugin tool - which benefits from Vulkan

https://github.com/google/filament

