
virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

A new Hardware Abstraction Layer for non-
Hypervisor environments based on virtio

Author: Michele Paolino, Alvise Rigo, Timos Ampelikiotis

Approver: Daniel Raho

Updated: on 2022-09-21

Contact: m.paolino @virtualopensystems.com

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 1/24 -

mailto:approver_name@virtualopensystems.com
mailto:approver_name@virtualopensystems.com

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

Table of Contents

1 About this document 3

1.1 Document scope 3

1.2 Revision history 3

1.3 References 3

1.4 Vocabulary 3

1.5 Glossary 4

2 Introduction 5

3 Requirements 6

4 State of the art (SoA) - Standard vhost-user implementation 7

5 Design 8

6 Description of the design component by component 9

6.1 virtio-loopback 10

6.2 virtio-loopback-adapter 12

7 Data Plane & Control Plane 13

7.1 Control Plane 13

7.2 Data Plane 16

8 Vring Memory Management 18

8.1 Brief description of the Vring 18

8.2 Sharing Vrings – Qemu case 19

8.3 Sharing Vrings – Virtio-loopback case 20

8.4 Architectural approaches for sharing the Vrings 21

9 Conclusion 22

 Annex I – Touchscreen sensitivity support 23

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 2/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

1 About this document

1.1Document scope

This document is introducing a new design of a Hardware Abstraction Layer (HAL) based on
virtio architecture and targeting non virtualized environments.

1.2Revision history

Date Revision Change description Section Author

2022-09-21 V1.3 Review 6, 7.2 Michele Paolino

‍2022-09-19 V1.2.5 Modify notification mechanism 6, 7.2 Timos Ampelikiotis

2022-06-22 V1.2 Review All Michele Paolino

2022-06-21 V1.1.7 Vrings’ Memory Management,
Proposed technics to share the Vring

8.4, 9 Timos Ampelikiotis

2022-05-12 V1.1 New delivery after community sync 7 Michele Paolino

2022-05-11 V 1.0 First version for discussion with EG-
VIRT

All Michele Paolino,
Alvise Rigo and

Timos Ampeliokitis

2022-04-28 V 0.3 Description of the Design’s
component

6 Timos Ampelikiotis

2022-04-28 V 0.2 Introduction 2 Michele Paolino

2022-04-15 V 0.1 First draft design All Timos Ampelikiotis

1.3References

Document name Revision

AGL_virtio_On_Native_2021_RFQ.pdf 2022-02-22

EG-VIRT Device Virtualization AGL Confluence 2022-05-11

1.4Vocabulary

The key words MUST, SHALL, "REQUIRED" are equivalent and they denote an absolute
requirement. If they are combined with a NOT they indicate an absolute prohibition of the
specification.

The key words SHOULD, RECOMMENDED are equivalent and they denote the fact that may
exist valid reason in particular circumstances to ignore a particular item, but the full
implications must be understood and carefully investigated. When they are used with the word
NOT there may exist valid reasons in particular circumstances when the particular behavior is
acceptable or even useful.

The key words MAY, OPTIONAL are equivalent and they mean that an item is truly optional.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 3/24 -

https://confluence.automotivelinux.org/display/VE/Device+Virtualization

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

1.5 Glossary

AGL Automotive Grade Linux

DMA Direct Memory Access

EG-VIRT Virtualization Expert Group

HAL Hardware Abstraction Layer

GPA Guest Physical Address

GVA Guest Virtual Address

HPA Host Physical Address

HVA Host Virtual Address

HW Hardware

IOCTL Input/output control device system call

IRQ Interrupt Request

MMIO Memory-mapped I/O

SYS_CALL System calls

SW Software

PA Physical Address

PCI Peripheral Component Interconnect

VA Virtual Address

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 4/24 -

https://en.wikipedia.org/wiki/Peripheral_Component_Interconnect

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

2 Introduction

This document details the design of a virtio HAL solution for non-virtualized environments
drafted by the Automotive Grade Linux (AGL) Virtualization Expert Group (EG-VIRT).

The objective of EG-VIRT is to abstract hardware dependencies for the AGL
framework/applications in a way that user space programs can be run unmodified on real
hardware, virtualized systems and in the cloud. virtio is notably the main abstraction solution
used in virtualized systems, and being an open standard is particularly of interest for its
application also in the native case. Several virtio drivers are already available in the Linux
kernel, and they provide a widely tested hardware/software interface for applications that have
been selected for this design.

At the same time, an increasing number of user space devices/accelerators drivers (open
source as well as proprietary) is today available. For instance, open source solutions based on
vhost-user are available for input, block, random number generator, net devices. Such devices
typology is a good solution to abstract the hardware access abstracting it from the kernel, from
the device type and from its license.

For this reason the two endpoints considered by this design are on one side the virtio driver in
the kernel, and on the other a user space device based on vhost-user (Figure 1).

The target of this activity is to develop a working virtio HAL prototypes and evaluate their
performance via a set of benchmarks.

This document is organized as follows: Section 3 details the requirements that led to this
design document, while Section 4 describes vhost-user technology as a key starting point for
the solution proposed. Difference between the two are also highlighted. The design and its
component is shown in more detail in Sections 5 and 6, where details on the implementation
are given together with a step by step description of control and data planes (Section 7).
Follows a closer look into the vring data structure and how this is handled in the presented
architecture (Section 8). Lastly, status and plans of the touchscreen activity are detailed

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 5/24 -

Figure 1: Objective of the virtio HAL abstraction design

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

together with conclusions respectively in Annex I and Section 9.
This document is intended to be continuously updated, with additional information about each
of the components and with a track record of the decisions taken.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 6/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

3 Requirements

Here below we recap the requirements included in the initial RFQ with an additional column
that refer to the section of this document where the requirement has been mentioned.

Require
ment

Description Details in
Section

REQ1 Run unmodified existing user-space applications 5
REQ2 Run existing vhost-user devices 5
REQ3 Target virtio (spec v1.1) on the kernel side 5
REQ4 AGL version LL+ and kernel version 5.4+ 5
REQ5 Touchscreen device with sensitivity support and open source driver

available. Possibility to connect it to the Renesas R-Car H3.
Annex I

REQ6 Follow zero-copy principle (tentative) 7
REQ7 Benchmark performance:

• Measure latency and throughput overhead of virtio common
device I/F implementation comparing to the case of common
kernel subsystem API as a HAL without virtio
frontend/backend.

• For latency measurements use virtio-input
◦ Generate input event using software input device (uinput)
◦ Receive generated event via virtio-input. Measure time

past.
• For throughput measurements use virtio-blk.

9

REQ8 Vhost-user -input to be extended with sensitivity support Annex I

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 7/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

4 State of the art (SoA) - Standard vhost-user implementation

One way to decouple the IO device from the driver in virtualized environments is today
represented by vhost-user. Thanks to vhost-user, it is possible to load a standardized (virtio)
driver in the guest, and then load a specific device driver in user space. Changing the device
driver in user space, does not affect the guest environment. Such abstraction capability is of
interest for this project, which wants to extend this functionality also to non-virtualized (native)
applications.

In general, the QEMU vhost-user architecture is composed by a userspace application (vhost-
user-device in Figure 2 on the left) that communicates with the QEMU process using a
standardized protocol, vhost-user. Inside QEMU the communication master (vhost-user.c) is
installed and interacts on one side with the guest kernel via the virtio transport and on the
other side with the device driver implementation in user space.

The proposed design (rightmost side of Figure 2) keeps unchanged both the protocol used
(vhost-user) and the device implementation. On the other hand, being in a non-virtualized
environment, the communication master features (vhost-user.c) will be moved from QEMU to a
different user space application that we call virtio-loopback-adapter. This component will then
interact with a new transport device, that now relies in the host kernel space, instead of the
host user space.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 8/24 -

Figure 2: QEMU vhost-user architecture on the left / virtio-loopback architecture on the
right side

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

5 Design

The proposed design is derived from the requirements detailed in Section 3. One of the key
points of the architecture is to keep the virtio drivers as well as the vhost-user user space
devices unmodified to benefit from the existing community efforts in these areas (REQ1 and
REQ2).

As a consequence, the driver to be used will be taken directly from the Linux kernel sources.
For what concerns the user space devices, the table below sums up the possible targets:

Device Description Sources
vhost-user-input User space implementation of input

device. To be used with keyboards,
mouse, etc.

https://github.com/QEMU/QEMU/
blob/master/contrib/vhost-user-
input/main.c

vhost-user-blk Userspace implementation of Block
(BLK) (Disk) device.

https://github.com/QEMU/QEMU/
blob/master/contrib/vhost-user-
blk/vhost-user-blk.c

vhost-user-rng Userspace implementation of
Random Number Generator (RNG)
device. It is developed in rust
programming language.

https://github.com/rust-vmm/vhost-
device/tree/main/rng

vhost-user-net
(tentative)

Userspace implementation of
networking driver.

To be discussed with EG-VIRT

Two new components, one in kernel space and the other in user space are proposed. The kernel
space component is a new virtio transport that forwards driver calls in user space where the
device is implemented.
The second component is an application in user space (virtio-loopback-adapter) that is
particularly important for the set-up of the system configuration, but that does not impact the
data plane path to avoid overhead.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 9/24 -

Figure 3: virtio-loopback high level design overview

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

The proposed architecture is not particularly bound to a given version of the Linux kernel, AGL
or virtio specs. As a result, during the implementation phase, REQ3 (virtio 1.1) and REQ4 (AGL
LL+ and kernel 5.4+) will be addressed.

The developed results will target meta-agl-devel/meta-egvirt and will be enabled agl-demo-
platform-virtio-native image in the AGL community. The kernel space virtio transport will be
proposed to the Linux kernel community, with the virtio-loopback-adapter application can be
considered part of a different repository hosted by AGL. The main components of the proposed
architecture are detailed in the next section.

6 Description of the design component by component

In this section each component of the design is detailed, including information about the
implementation. The idea behind this design is to keep the same logic as in QEMU, to not
diverge too much from its highly tested design and logic as well as to keep existing vhost-user
devices unchanged.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 10/24 -

Figure 4: virtio-loopback kernel and user space components

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

6.1 virtio-loopback

Virtio-loopback resides in the Linux kernel and is acting as virtio transport that communicates
with the virtio driver, as well as a standard character device (/dev/virtio-loopback) that provides
memory to be mapped to the vhost-user-device.

Compared with other existing virtio transport drivers (such as virtio-mmio or virtio-pci), virtio-
loopback transport driver is designed to be used in an environment with no emulation,
virtualization or para-virtualization. Its first objective is allowing the virtio driver to correctly
setup the virtio communication with the rest of the system.

More in details, existing virtio-transport drivers interact with the QEMU emulated device (called
virtio-(input/rng/blk)-device in QEMU) via Memory Mapped IO (MMIO) “read/write” operations.
The proposed virtio-loopback-transport instead of MMIO read/write will trigger notifications
(eventfd) to the “virtio-loopback-adapter”, either to notify for new written data (write
operation) or to request new data (read operation).

Additionally, the key role of the transport layer is to implement hooks for the virtio driver, that
in the Linux kernel driver are represented by the virtio_config_ops structures. As a result, each
one of the expected function needs to be re-implemented to be run in a non-virtualized
environment:

• Functions that interact with the device status (e.g., get(), set(), get_status(),
set_status(), get_features(), finalize_features() and reset()):

◦ Implementation in a virtualized environment: these call are making MMIO
read and write accesses to the virtio device registers. As a result of these accesses,
the proper QEMU IO callbacks (part of the emulation of the virtio device) are
returning/setting the desired values. For instance, to get the device status with the
virtio-mmio transport, the virtio driver would MMIO read 4 bytes at offset
VIRTIO_MMIO_STATUS, causing a trap in the host system and making QEMU resolve
the request.

◦ virtio-loopback implementation: This will be implemented as a combination of
eventfds and system calls. The above device status read example in this scenario
would be accomplished by writing the VIRTIO_LOOPBACK_STATUS value in a shared
structure between the device and the transport; then, the transport driver would
forward the request to the user space adapter notifying it via an eventfd and wait
for a response, which will be written back in a different field of the shared
structure. The notification of such a response will be done with an ioctl() or write()
to the virtio-loopback kernel driver.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 11/24 -

Figure 5: virtio-loopback kernel components overview

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

• Functions that set-up virtqueues (e.g., find_vqs(), del_vqs()):

◦ Implementation in a virtualized environment: find_vqs() and del_vqs() are
necessary to setup the virtqueues for the device. Although this job seems to be
transport layer-independent, it is actually not as the virtqueues require to have a
dedicated IRQ which depends on the system/type of transport layer used. In
addition, the configuration of the virtqueue requires several pieces of information
from the device (like maximum number of queues supported, alignment
requirements, etc.) which are retrieved via specific register (PCI or MMIO) accesses.
At the end of these calls, the driver must send to the host (or, in our case, the vitio-
loopback-adapter) the coordinates of the queues (in virtio MMIO driver this is done
via the registers VIRTIO_MMIO_QUEUE_DESC_LOW, VIRTIO_MMIO_QUEUE_AVAIL_LOW
and VIRTIO_MMIO_QUEUE_USED_LOW). It is worth noting that the IRQ allows to have
notifications from the slave (the actual vhost-user driver) to the master (the virtio
kernel driver). In QEMU, this notifications are done via a guest notifier, as opposed to
the notification path that goes from the guest to the host, which is called host
notifier.

◦ virtio-loopback implementation: In the loopback case, we can not have a
dedicated IRQ as we are not in a virtualized environment. For this reason, the virtio-
loopback kernel driver must provide some means of notification for the user space,
in order to signal certain events (analogously to what done in the virtualized
scenario by the host notifier which relies on IRQFD to trigger an IRQ inside the
guest). This can be done by a dedicated file, /dev/virtio-loopback-*, which supports a
SYS_CALL as notification and which will be opened in user space by the virtio-
loopback-adapter. Thanks to a prior exchange of file descriptors between the vhost-
user-(input/blk/rng)-device and the virtio-loopback-adapter, the former will be able to
directly invoke the SYS_CALL on the file descriptor (it could be a simple write(); in
this case, the notification mechanism will be identical to the virtualized scenario with
just a different file-based abstraction i.e., character file vs. eventfd file).

• Functions to access virtqueues (e.g., get_shm_region())

◦ Implementation in a virtualized environment: In the virtualized scenario this is
done indirectly, by exploiting QEMU (owner of the whole guest memory and thus of
the virtqueues). In fact, QEMU can easily share the file descriptor of the guest
memory and send it to the user space process willing to read and write to it (to do
this, however, the process must be privileged). Simplifying a bit, the destination
process can mmap() the whole guest memory and, thanks to the fact that it has the
address of each virtqueue, it can precisely reach them.

◦ virtio-loopback implementation: In the loopback case, to enable a user space
process (vhost-user-(input/blk/rng)-device) to directly access the virtqueues, the
virtio-loopback-transport driver should create "/dev/virtio-loopback" folder in which
specialized character files should be created that refer, each of them, to the
underlying virtio kernel driver. For instance, /dev/virtio-loopback-0 can be created for
the first input device, and so on. By mmap()-ing this file, the user space process will
have access with a contiguous virtual memory area to all the queues owned by the
corresponding virtio kernel driver.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 12/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

6.2 virtio-loopback-adapter

The virtio-loopback-adapter application has the important role to establish the control plane
between the userspace device implementation and the virtio driver in the kernel space. As
mentioned in Section 4, this component implements part of the features that are today
implemented by QEMU (vhost-user-protocol-master in Figure 6) and keeps track of the status of
each user space device present on the system. One instance of virtio-loopback adapter is run
per device. This mimics the behaviour that today QEMU has, and provides best compatibility
with existing devices implementation.

As detailed below in the figure, on the one hand virtio-loopback-adapter communicates with
virtio-loopback-transport via the /dev/virtio-loopback device node using SYS_CALLS and on the
other hand it communicates with the vhost-user-device over UNIX socket using the vhost-user
protocol.

Every time that a new device is started, it waits for vhost-user messages to be received over
the shared socket. As a result, the virtio-loopback-adapter will implement the necessary logic to
establish the communication with the vhost-user(input/rng/blk)-device and to retrieve
information from the vhost-user(input/rng/blk)-device needed from both virtio and vhost-user
communication.

The device status information is queried from both the driver and the device implementation
itself. In vhost-user virtualized environments, QEMU keeps track of such information and
provides means to get-set it to the virtio driver, as well as to the userspace device via vhost-
user messages. In this design, to maintain the same implementation of both the driver and the
user space device, the device status will be kept and updated in the adapter component.

As a result, what in the virtualized scenario was done by means of MMIO read and write, in the
virtio-loopback-adapter will be done via:

• eventfd(s) used to notify the adapter about new requests

• IOCTL (SYS_CALL) calls to notify the kernel components of a new request

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 13/24 -

Figure 6: virtio-loopback-adapter component description

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

7 Data Plane & Control Plane

This section provides further details of how the data and control planes of the solution will
work. Each execution flow is shown detailing the different execution steps. Some of these
execution steps might slightly change during the implementation phase (e.g., because a
performance optimization has been found and applied, because of comments from open source
communities, etc.).

7.1Control Plane

The control plane execution is shown in the following Figures in four steps. It is normal for the
control plane to be more complex than data plane. The target of this phase is to set-up the
environment to facilitate as much as possible (and with best performance) the data plane.

Figure 7: Components initialization: The control plane set up starts with the execution of the
components presented in this design document. Initially, the virtio-loopback.ko is added to the
system (e.g., running insmod virtio-loopback.ko). The module inserted will create a new device node
/dev/virtio-loopback and wait for requests from the virtio-loopback-adapter (step 1). Later, the
device is started, providing as an argument the path to the UNIX socket and the other device
dependent parameters (e.g., shared memory object, block file, etc.) used by the device. After, virtio-
loopback-adapter is started with socket and device type parameters (steps 2 to 5). Initial message
exchanges will happen already between device and virtio-loopback-adapter exchanging information
related to virtio and vhost-user features. At the end of this exchange, the virtio-loopback-adapter
knows (almost) all the information that later will be requested by the virtio-driver (step 6). Once all
components are up and running, the virtio-loopback-adapter calls an IOCTL SYS_CALL to the
/dev/virtio-loopback device providing the virtio type (e.g., blk, rng, input) (Step 7).

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 14/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

Figure 8: virtio-loopback-adapter configuration. As a result of the previously described IOCTL
SYS_CALL, a new device node /dev/virtio-loopback-(rng/blk/input) will be created (step 8). After, the
virtio-loopback-adapter calls an IOCTL to the /dev/virtio-loopback-* and provides virtio specific
information (Step 9) that has earlier obtained from the vhost-user-(rng/blk/input)-device (e.g.,
feature bits, max number of VirtQueues supported, etc.).

Figure 9: virtio-loopback-transport initialization: At this point, /dev/virtio-loopback-* probes the
virtio-loopback-transport component with the information provided by the previous IOCTL (e.g.,
VendorID, Device Type, Magic Number, etc) and process the finalized features to be written back to
the vhost-user-(rng/blk/input)-device (Step 10). This happens with an EventFD in direction of the
virtio-loopback-adapter that then reads the features (via a SYS_CALL) (Step 11a and 11b). The virtio-
loopback-adapter sends the finalized feature bits via the Unix Socket to the
vhost-user-(rng/blk/input)-device (VHOST_USER_SET_FEATURES) (Step 12-13).

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 15/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 16/24 -

Figure 10: virtio-(rng/blk/input)-driver initialization: At this point, virtio-loopback-transport
registers a new device virtio-(rng/blk/input) (Step 14). The virtio-(rng/blk/input) is started and the
Vrings are created (Step 15). The virtio-loopback-transport notifies the virtio-loopback-adapter that
the Vrings are created and can be shared (with the vhost-user-(rng/blk/input)-device) via an EventFD
(Step 16). The virtio-loopback-adapter transfers this information to vhost-user-(rng/blk/input)-device
over the Unix Socket with the following messages “VHOST_USER_ADD_MEM_REG”,
“VHOST_USER_SET_VRING_NUM”, “VHOST_USER_SET_VRING_BASE”,
“VHOST_USER_SET_VRING_ADDR”, “VHOST_USER_SET_VRING_KICK”,
“VHOST_USER_SET_VRING_CALL” (Step 17-18). The vhost-user-(rng/blk/input)-device calls “mmap”
to the File Descriptor (FD) referred to the /dev/loopback-* (Step 19). The “mmap” SYS_CALL is
defined in the virtio-loopback-transport and returns a virtual address to the Vrings (Step 20).

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

7.2Data Plane

This section describes the process followed in order to exchange data between the virtio-driver
and vhost-user-(rng/input/blk)-device. In general, the mechanism used to share the virtual rings
(vrings) between the virtio-driver and the vhost-user-(rng/input/blk)-device is based on a
memory mapping shared between the vhost-user-device and the device. This solution enables
vrings direct access from the device, without the need to copy buffers from/to kernel
(copy_to_user(), copy_from_user()) to exchange data. As a result, the proposed design meets
REQ6 (no copies in data exchanges, to minimize overhead).

Here below we first describe the steps needed to send data from the driver to the device
(Figure 11) and later we detail the opposite case, when the user space device sends data to the
driver (Figure 12).

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 17/24 -

Figure 11: virtio-driver sends data to vhost-user-device: After having written new data in the
vrings, the virtio-driver notifies the vhost-user-device to read it via the virtio-loopback-transport driver
by executing the notify function which is defined by the virtio-loopback-transport driver (Step 1-2).
Such function triggers an eventfd to the virtio-loopback-adapter, and the last another eventfd to the
vhost-user-device, that will know at that point that new data has been written in the vrings shared
memory (Step 3-5).

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 18/24 -

Figure 12: virtio-driver receives data from vhost-user-device: After having written the vrings
memory, the vhost-user-device notifies the virtio-loopback-adapter with an eventfd and the last
delivers this notification to the loopback driver via an ioctl/write call(Step 1-3). At this point, as a result
of the SYS_CALL, the virtio-loopback-transport notifies (by calling the function “vm_interrupt”) the
virtio-driver to read the vrings (Step 3). Finally, the virtio-driver reads the new data from the vrings
(Step 4). This is an optimized execution flow that will be evaluated from the viewpoint of the impact it
has on the existing device implementation. The alternative is to pass by the virtio-loopback adapter.

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

8 Vring Memory Management

The vrings are a very important component of the virtio protocol for transferring the data. The
sharing of the vrings between the virtio-loopback-transport and the vhost-user-device is the key
feature of this architecture.

This section includes:

1. A brief description of the Vrings’ data structure

2. Accessing the Vrings from Qemu and vhost-user-device.

3. Sharing the Vrings between the virtio-loopback-transport and the vhost-user-device.

4. Architectural approaches which can overcome the challenges.

8.1Brief description of the Vring

The vrings are used to exchange data between the guest and the host. As visible in the Figure
13, the vring structure consists of the following three components:

1. struct vring_desc: Holds the Guest Physical Addresses of the shared buffers which
include the data to be exchanged between the driver and the device.

2. struct vring_avail: Contains the indexes of the vring_desc structure which points to the
data supplied by the driver to the device.

3. struct vring_used: Holds the indexes of the vring_desc structure which points to the
data supplied by the device to the driver.

Among these three data structures, “struct vring_desc” is the most important because it
contains the address of the data to be shared. In fact, the “vring_desc_t struct” includes the
attribute “addr” which holds the Guest Physical Address (GPA) where the data is stored. The
data is organized in a Scatter Gather List (GS) which is located outside this contiguous memory
region. This SG entry are filled by the driver/device to transfer data (input/output) between the
Guest and Host.

As the name suggests, the GPA requires the existence of a guest memory, which is not present
in the virtio-loopback case. This point will be described further below.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 19/24 -

Figure 13: Description of the Vrings

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

8.2Sharing Vrings – Qemu case

In this section we will focus how Qemu access the vrings and later how these are shared and
accessed by vhost-user-device.

The vhost-user-device in order to access the Vrings needs to: 1) create a pointer to the
“vring_desc” data structure (detailed in section 8.1), and 2) decode the addr attribute,
contained into the “vring_desc”, in order to obtain the memory address of the shared data.

As for the first one, Qemu knows where the Vrings’ data structure is located in the Guest
Memory’s (Guest Physical address), and via DMA operations is able to convert these address
into HOST pointers to that data (Host Virtual Address, HVA). Later on Qemu is sharing these
HVA pointers to the vhost-user-device via a vhost-user message. However, these pointers are
valid in the Qemu address memory space only, and the vhost-user-device needs a mechanism
to translate them into its own virtual address space. This is done via the “qva_to_va()“ function
from the vhost-user library.

The second point, attribute “addr”, holds the GPA of the shared buffer and it is accessible by
Qemu via DMA operations. Vhost-user-device at this point needs a similar mechanism able to
translate a GPA to its own VA, this is the role of the “vu_gpa_to_va()” function.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 20/24 -

Figure 14: Qemu share the Vrings with vhost-user-device

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

8.3Sharing Vrings – Virtio-loopback case

In this section we will describe the difference of accessing the Vrings in the virtio-loopback case
compared to the Qemu shown in the previous section.

As it is depicted in the Figure 15, the key difference is that, not having a guest in the virtio-
loopback case, the vrings are not anymore in the guest kernel memory (host user space), but
they are located in the host kernel space. Consequntly, the “uint64_t addr” attribute is a “Host
Physical Address” and not anymore a “Guest Physical Address” (like in the Qemu case).

As a result, there is a need to make sure that vhost-user-device can access the “addr” attribute
of the vring structure and translate/remap it in its own address space.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 21/24 -

Figure 15: Sharing Vrings into the Virtio-Loopback architecture

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

8.4 Architectural approaches for sharing the Vrings

One approach to enable vhost-user-device to access the data pointed by a HPA, is to make the
vhost-user-device to call “mmap” in a way to define a base address virt_base (Figure 16).

The virtio-loopback-transport driver will bind the return virtual pointer of this call to the lowest
HPA (l_hpa) used for that virtio-device. Whenever, vhost-user-device wants to access a HPA
(l_hpa + offset_x) will access the virtual address virt_base + offset_x. Then, a page_fault is
going to take place and the virtio-loopback-transport driver will provide access to the correct
data by applying the following formula to the fault_addr: l_hpa + (fault_addr – virt_base) =
l_hpa + offset_x.

Alternatively, the vhost-user-device calls “mmap” for each HPA that needs to access, and the
virtio-loopback-transport driver provides the corresponding virtual pointer.

It is worth to mention that the above described approaches demand changes of “vhost-user”
library, which is used by the the vhost-user-device. The reason of that is, “vhost-user” library is
designed having in mind the presence of Qemu and a Guest (VM), which neither of them are
part of our scenario. As a result, modification need to be applied at segments of the source
code related to sharing and translating “pointer” and PA from Qemu (or Guest) to vhost-user-
device.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 22/24 -

Figure 16: Sharing Vrings - Virtio-Loopback - Page Fault approach

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

9 Conclusion

This document presented the virtio Hardware Abstraction Layer (HAL) solution for non
virtualized environments design, together with its most important components and a plan for
the implementation.
The design targets to address all the requirements (Section 3) listed by AGL EG-VIRT, and aims
at evaluating the performance overhead that the proposed HAL creates.

This document is intended to be continuously updated, addressing comments arriving from AGL
community and updating the design with additional information retrieved directly during
implementation.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 23/24 -

virtio Hardware Abstraction Layer (HAL) design for AGL - 2022-09-21

Annex I – Touchscreen sensitivity support

This project includes activities related to the identification of a touchscreen device with
sensitivity support (REQ5) and with its integration in both the AGL standard set-up and the
virtio-loopback case (REQ8).

After having evaluated different solutions, the MatrixOrbital HTT70A R1.0.0, a 7 inch 1024 x
600 HDMI Display with Touchscreen was accepted by EG-IVI. This solution provides an utility
application (HTT_utility) to change the sensitivity of the device. The source code is available at
https://github.com/MatrixOrbital/HTT-Utility.

As shown in Figure 17, the set_sensitivity calls the hid_send_feature_report that, for the Linux
implementation of the hidapi results in an ioctl() in the HIDRAW device. This feature has been
tested on Linux development system (x86 desktop) and is in fact working.

For what concerns the touchscreen input, the device has been tested on the development
system and is recongnized by the Linux kernel with no additional driver needed. The same was
also tested in a KVM environment, where using vhost-user-input the events were visible in
kernel space. The touchscreen device has been recognized at boot time with the following:

input: Matrix Orbital Multi-Touch Device as
/devices/pci0000:00/0000:00:03.0/virtio0/input/input1

For what concerns the Renesas R-Car M3 target, first investigations in the kernel configuration
shown that the CONFIG_HIDRAW is not enabled by default in the current AGL configuration.
This driver is needed to expose the /dev/hidraw devices used to set sensitivity (via ioctl). As a
result, with AGL today the touchscreen device works but it is not possible to change sensitivity.

Next steps are to add CONFIG_HIDRAW to the M3 Linux BSP configuration, and to test it with
AGL LL+ and kernel 5.4+. This, together with a plan for integration in virtio-loopback to be
discussed with EG-IVI, will be released at AGL AMM 2022.

Lastly, the release license of the HTT-Utility application is not clear (nothing is mentioned in
github, but the company customer support says it should be MIT or 3 clause BSD). A simple
alternative user space application could be implemented if there are licensing issues in
integrating htt_util in AGL.

SAS Virtual Open Systems - Registered at 529 212 987 RCS Grenoble - www.virtualopensystems.com
- Page 24/24 -

Figure 17: Implementation of the set_sensitivity function in the htt_util.cpp file

https://github.com/MatrixOrbital/HTT-Utility

	1 About this document
	1.1 Document scope
	1.2 Revision history
	1.3 References
	1.4 Vocabulary
	1.5 Glossary

	2 Introduction
	3 Requirements
	4 State of the art (SoA) - Standard vhost-user implementation
	5 Design
	6 Description of the design component by component
	6.1 virtio-loopback
	6.2 virtio-loopback-adapter

	7 Data Plane & Control Plane
	7.1 Control Plane
	7.2 Data Plane

	8 Vring Memory Management
	8.1 Brief description of the Vring
	8.2 Sharing Vrings – Qemu case
	8.3 Sharing Vrings – Virtio-loopback case
	8.4 Architectural approaches for sharing the Vrings

	9 Conclusion
	Annex I – Touchscreen sensitivity support

