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Virtio-loopback approach

Virtio Loopback describes a new Hardware Abstraction Layer (HAL) for non-
Hypervisor environments based on virtio. 

Virtio-loopback gives the ability to host user-space applications to take advantage 
of user-space drivers
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➢ The kernel space component is a new virtio transport that forwards driver calls in 
user space where the device is implemented. 

➢ The second component is an application in user space (virtio-loopback-adapter) 
that is particularly important for the set-up of the system configuration, but that 
does not impact the data plane path to avoid overhead.

Virtio-loopback components
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Current status of the activity

 Alpha release: Publicly released with docs and demo
 Beta release:  Done for this review
 Next steps:

➢ Merge the beta into the master
➢ Benchmarks
➢ Prepare AGL patches
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Control Plane (1)
The following three steps are describing briefly the control plane 
which takes place before the whole system is ready to exchange 
any data.

The control plane consists of stages of communication:
 [Stage 1] Adapter ↔ Vhost-user-device 
 [Stage 2] Adapter ↔ Transport driver
 [Stage 3] Adapter ↔ Vhost-user-device
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Control Plane (2)

  [Stage 1] Adapter ↔ Vhost-user-device
➢ The vhost-user-device sends via the Unix socket to the adapter:

➢ Virtio features, vhost-user protocol features, virtio device 
configuration
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Control Plane (3)

  [Stage 2] Adapter ↔ Transport driver
➢ The adapter sends to the loopback driver:

➢ Virtio specific information: Device id, Vendor, magic number
➢ Virtio device features

➢ The virtio-loopback-transport starts and register the corresponding 
virtio device (blk, input, rng)

➢ Acknowledges the features 
and writes back to the
adapter
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Control Plane (4)

  [Stage 3] Adapter ↔ Vhost-user-device
➢ The adapter sends to the vhost-user-device:

➢ The acknowledged virtio features
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Communication mechanisms used between 
the components

 Adapter ↔ driver : Eventfds, SYS_CALLS
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Communication mechanisms used between 
the components

 Adapter ↔ driver : Eventfds, SYS_CALLS
 Vhost-user-device ↔ adapter : Eventfds, Unix Socket
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Communication mechanisms used between 
the components

 Adapter ↔ driver : Eventfds, SYS_CALLS
 Vhost-user-device ↔ adapter : Eventfds, Unix Socket
 Vhost-user-device ↔ driver:  SYS_CALLS
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Memory mapping mechanism (data plane)
Vhost-user mmap the Vrings (part 1)

The vhost-user-device access the data exchanged with the virtio device 
in two parts. First, access the vring data structure (in kernel space) and 
then access the SG list entries pointed by the vrings. 
 Vring data structure The device uses mmap in order to obtain access 
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Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

 SG list entries The vhost-user-device uses the ioctl in order to ask the transport 
driver for access to the buffer (Host Physical Address) pointed the descriptors’ table

1) If the driver has already shared this memory page with the vhost-user-device, 
returns an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling 
‘mmap’ function

3) The vhost-user-device obtains a pointer to this SG list element
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Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

1) If the driver has already shared this memory page with the vhost-user-device, 
returns an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling ‘mmap’ 
function

3) The vhost-user-device obtains a pointer to this SG list element
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Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

1) If the driver has already shared this memory page with the vhost-user-device, returns 
an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling 
‘mmap’ function

3) The vhost-user-device obtains a pointer to this SG list element
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Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

1) If the driver has already shared this memory page with the vhost-user-device, 
returns an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling ‘mmap’ 
function

3) The vhost-user-device obtains a pointer to this SG list element
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Live demo (input + blk)
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Upstream
The key upstream target for this work is AGL. Yocto layers and recipes 
will be created and integrated in meta-egvirt. However, each and every 
component could be integrated in the reference community
 Virtio-loopback-transport driver → Linux Kernel

➢ (Mailing list: dev-mailing-lists-virtio)

 Virtio-loopback-adapter → Qemu project
 

 Vhost-user devices:
➢ Vhost-user-library → Qemu project
➢ Vhost-user-rng (RUST)

➢ https://github.com/rust-vmm/vhost-device
➢ https://github.com/rust-vmm/vm-virtio
➢ https://github.com/rust-vmm/vhost-user-backend
➢ https://github.com/rust-vmm/vhost 

What’s the best strategy to propose these components to the community(ies)?

https://github.com/rust-vmm/vhost-device
https://github.com/rust-vmm/vm-virtio
https://github.com/rust-vmm/vhost-user-backend
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Next steps

  Merge beta version into master branch
➢ More testing
➢ Polish the code / address comments
➢ Update / add documentation

  Run benchmarks for vhost-user-blk & input
➢ Using ‘dd’ for measuring blk throughput
➢ Measure event latency with the help of ‘vinput’

  Create patches for the AGL
➢ Meta-egvirt additions
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Questions

?



contact@virtualopensystems.com
Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/
Demos: virtualopensystems.com/en/solutions/demos/ 
Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/
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