
Company Profile

2018-05-05
contact@virtualopensystems.com

www.virtualopensystems.com

AGL Virtio-loopback
Code review planned on (9/11/2022)

A work carried on by Virtual Open Systems, on behalf of Linux Foundation,
to enhance Automotive Grade Linux (AGL)

mailto:contact@virtualopensystems.com

2

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

3

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

Virtual Open Systems Confidential & Proprietary 4

Virtio-loopback approach

Virtio Loopback describes a new Hardware Abstraction Layer (HAL) for non-
Hypervisor environments based on virtio.

Virtio-loopback gives the ability to host user-space applications to take advantage
of user-space drivers

Virtual Open Systems Confidential & Proprietary 5

➢ The kernel space component is a new virtio transport that forwards driver calls in
user space where the device is implemented.

➢ The second component is an application in user space (virtio-loopback-adapter)
that is particularly important for the set-up of the system configuration, but that
does not impact the data plane path to avoid overhead.

Virtio-loopback components

6

Current status of the activity

 Alpha release: Publicly released with docs and demo
 Beta release: Done for this review
 Next steps:

➢ Merge the beta into the master
➢ Benchmarks
➢ Prepare AGL patches

7

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

8

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

9

Control Plane (1)
The following three steps are describing briefly the control plane
which takes place before the whole system is ready to exchange
any data.

The control plane consists of stages of communication:
 [Stage 1] Adapter ↔ Vhost-user-device
 [Stage 2] Adapter ↔ Transport driver
 [Stage 3] Adapter ↔ Vhost-user-device

10

Control Plane (2)

 [Stage 1] Adapter ↔ Vhost-user-device
➢ The vhost-user-device sends via the Unix socket to the adapter:

➢ Virtio features, vhost-user protocol features, virtio device
configuration

11

Control Plane (3)

 [Stage 2] Adapter ↔ Transport driver
➢ The adapter sends to the loopback driver:

➢ Virtio specific information: Device id, Vendor, magic number
➢ Virtio device features

➢ The virtio-loopback-transport starts and register the corresponding
virtio device (blk, input, rng)

➢ Acknowledges the features
and writes back to the
adapter

12

Control Plane (4)

 [Stage 3] Adapter ↔ Vhost-user-device
➢ The adapter sends to the vhost-user-device:

➢ The acknowledged virtio features

15

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

16

Communication mechanisms used between
the components

 Adapter ↔ driver : Eventfds, SYS_CALLS

17

Communication mechanisms used between
the components

 Adapter ↔ driver : Eventfds, SYS_CALLS
 Vhost-user-device ↔ adapter : Eventfds, Unix Socket

18

Communication mechanisms used between
the components

 Adapter ↔ driver : Eventfds, SYS_CALLS
 Vhost-user-device ↔ adapter : Eventfds, Unix Socket
 Vhost-user-device ↔ driver: SYS_CALLS

19

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

20

Memory mapping mechanism (data plane)
Vhost-user mmap the Vrings (part 1)

The vhost-user-device access the data exchanged with the virtio device
in two parts. First, access the vring data structure (in kernel space) and
then access the SG list entries pointed by the vrings.
 Vring data structure The device uses mmap in order to obtain access

21

Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

 SG list entries The vhost-user-device uses the ioctl in order to ask the transport
driver for access to the buffer (Host Physical Address) pointed the descriptors’ table

1) If the driver has already shared this memory page with the vhost-user-device,
returns an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling
‘mmap’ function

3) The vhost-user-device obtains a pointer to this SG list element

22

Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

1) If the driver has already shared this memory page with the vhost-user-device,
returns an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling ‘mmap’
function

3) The vhost-user-device obtains a pointer to this SG list element

23

Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

1) If the driver has already shared this memory page with the vhost-user-device, returns
an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling
‘mmap’ function

3) The vhost-user-device obtains a pointer to this SG list element

24

Memory mapping mechanism (data plane)
Vhost-user-device mmap the SG list (part 2)

1) If the driver has already shared this memory page with the vhost-user-device,
returns an VMA (Virtual Memory address) in the ‘mmap_addr’ argument.

2) Otherwise the driver returns 0 and vhost-user-device goes on with calling ‘mmap’
function

3) The vhost-user-device obtains a pointer to this SG list element

25

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

26

Live demo (input + blk)

27

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

Virtual Open Systems Confidential & Proprietary 28

Upstream
The key upstream target for this work is AGL. Yocto layers and recipes
will be created and integrated in meta-egvirt. However, each and every
component could be integrated in the reference community
 Virtio-loopback-transport driver → Linux Kernel

➢ (Mailing list: dev-mailing-lists-virtio)

 Virtio-loopback-adapter → Qemu project

 Vhost-user devices:
➢ Vhost-user-library → Qemu project
➢ Vhost-user-rng (RUST)

➢ https://github.com/rust-vmm/vhost-device
➢ https://github.com/rust-vmm/vm-virtio
➢ https://github.com/rust-vmm/vhost-user-backend
➢ https://github.com/rust-vmm/vhost

What’s the best strategy to propose these components to the community(ies)?

https://github.com/rust-vmm/vhost-device
https://github.com/rust-vmm/vm-virtio
https://github.com/rust-vmm/vhost-user-backend

29

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

Virtual Open Systems Confidential & Proprietary 30

Next steps

 Merge beta version into master branch
➢ More testing
➢ Polish the code / address comments
➢ Update / add documentation

 Run benchmarks for vhost-user-blk & input
➢ Using ‘dd’ for measuring blk throughput
➢ Measure event latency with the help of ‘vinput’

 Create patches for the AGL
➢ Meta-egvirt additions

31

Discussion Index

 Brief design description and current status
 Code review

➢ Control plane
➢ Communication mechanisms
➢ Memory mapping (data plane)

 Live demo
 Upstream
 Next steps
 Questions

32

Questions

?

contact@virtualopensystems.com
Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/
Demos: virtualopensystems.com/en/solutions/demos/
Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/

mailto:contact@virtualopensystems.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

