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Virtio-loopback phase 2 objectives

The list of the project task are:

Task 1: virtio-loopback support for virtio-GPU
Task 2: virtio-loopback support for virtio-sound
Task 3: virtio-loopback support for virtio-CAN
Task 4: virtio-loopback support for virtio-GPIO and console
Task 5: Apply Non-HV VirtIO to Cloud

For tasks 1-4, the target is to use existing vhost-user device 
backends (GPU, sound, GPIO) or implement them when 
needed (CAN and console).
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Add adapter support for vhost-user-gpu 
Use QEMU’s implementation ‘hw/display/virtio-gpu*’
Isolate & extract dependencies from QEMU
Re-write systems which are not ported from QEMU

➢e.g., QEMU character device abstraction
➢ Used to operate socket communication

➢Timer classes
➢Object oriented device initializations
➢QEMU Type system & parent/child relationships

Task 1: GPU - activity description
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Adding rendering capability to the adapter (same as 
QEMU)
Selected the SDL/EGL backend to set the scene 

based on how QEMU does it (discarded GTK)
Extracted the dependent functionality from QEMU
– DisplayChangeListener API and SDL API

Integration of SDL window initialization on adapter

Task 1: GPU - activity description
Windowing system
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 Adapter support for the virtio-gpu split in 3 
parts

– Vhost-user-gpu interface

– Virtio-gpu device model

– SDL rendering

• Uses the real-GPU to render on the 
host compositor

 Sequence of actions

– Virtio-loopback probes the virtio-gpu driver 
upon adapter request

– Initial SDL window creation

– Weston & application targets the virtio-gpu 
exposed DRM device files

– Frames are rendered by the adapter upon 
‘contrib/vhost-user-gpu’ requsts 

Task 1: GPU – architecture overview

Virtio-GPU
/dev/dri/card & renderD
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  Virtio-loopback-adapter integration status

– Vhost-user-gpu interface [initial version done]

• QEMU structures/functionality used by virtio-gpu

– Virtio-gpu device model [WIP]

– SDL rendering [initial version done]

• Frames updates based on vhost-user-gpu requests
  Yocto integration

– Recipe creation [WIP]

• fixing libpixman/virgilrender dependency issues

Task 1: status overview
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Task 1: status

1) virtio-loopback-adapter running and connected to the '/tmp/vgpu.sock' socket 
provided by 'contrib/vhost-user-gpu' application
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Task 1: status

2) weston compositor started on the DRM device probed by the virtio-loopback-adapter 
kernel driver via the adapter
● WIP: The application does not recognize the proped driver by virtio-loopback and 

fallbacks to the default gpu node
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Task 1: status

3) glmark2 application startup. The command line includes the DRI_PRIME=1 to indicate 
the DRM rendering node associated with this workload
● WIP: The application does not recognize the proped driver by virtio-loopback and 

fallbacks to the default gpu node
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Task 1: status

3) Rendering part of the virtio-loopback-adapter rendering the frames coming from the 
'contrib/vhost-user-gpu' application
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Task 1: conclusions and next steps

➢ Very challenging task (QEMU side only is ~4500 lines of code)
➢ Complexity comes from the different layers in play: QEMU device 

abstraction, QEMU type system, vhost-user protocol, SDL API, etc.
➢ We have a first version of the QEMU vhost-user-gpu support in the adapter

➢ Able to register a new virtio-gpu device via vhost-user-gpu protocol 
(communication between adapter and kernel is OK) 

➢ Able to start rendering window (SDL initialization works)

Next Steps:
➢ Fix requests from virtio-GPU kernel model to the adapter GPU device model (to 

fix differences between QEMU device models and adapter)
➢ Trial error process: the complexity of QEMU abstraction makes things hard 

to debug
➢ We remain committed and we keep working
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Task 2: sound activity description

➢ Work is based on a rust-vmm device under active development
➢ No crates.io availability yet
➢ Issues with cross-compilation

➢ Vhost-user-sound adapter support added
➢ Tested with AGL reference hardware
➢ Create multi-sound devices support

➢ [Additional task activity added during the project]
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The demonstration (AGL ALS Tokyo) shows two completely separated sound stacks 
running on top of virtio-loopback architecture:

➢ Two applications (“aplay”) route their audio via the 

➢ Two virtio-loopback drivers and  vhost-user-sound devices

Both audio streams converge in “pipewire” audio server which can manage/prioritize the 
audio streams!

Task 2: demo on reference hardware
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Task 2: sound status

➢ Development and functional testing completed
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Task 2: next steps

➢ Create yocto recipe
➢ The lack of crates.io support for vhost-user-sound obliges us 

to a “manual” approach
➢ Issues with cross compilation (rust AGL yocto support )

➢ Current recipe works with qemux86_64 target but doesn’t 
with arm based targets
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Task 3: CAN activity description

➢ Vhost-user-can device not available at the beginning of the task. 
We need to create it

➢ Existing virtio-can driver RFC (SocketCAN) based on virtio-can 
RFC code from OpenSynergy (https://lwn.net/Articles/934187/) 
can be reused

➢ Enable vhost-user device support in the virtio adapter
➢ Yocto integration
➢ Push contributions back to rust-vmm

https://lwn.net/Articles/934187/
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Task 3: CAN status

➢ Task 3 – virtio-loopback support for virtio-CAN
➢ Created vhost-user version of virtio-can driver that uses Linux kernel 

pre-existing device driver (SocketCAN)
➢ Vhost-user-can Gerrit: 

https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29
407

➢ Enabled vhost-user device support in the virtio adapter
➢ Gerrit link: https://gerrit.automotivelinux.org/gerrit/c/src/virtio/virtio-

loopback-adapter/+/29493
➢ Proposed the newly created device to rust-vmm communtiy

➢ Pull request on rust-vmm: https://github.com/rust-vmm/vhost-
device/pull/602
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Task 3: next steps

➢ Support existing pull request addressing community requests
➢ Pull request on rust-vmm: 

https://github.com/rust-vmm/vhost-device/pull/602
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Task 4: activity description
GPIO & Console

➢ GPIO
➢ Vhost-user-device available
➢ Add support for the adapter and prepare yocto recipe

➢ Console
➢ No vhost-user-device available (same as CAN)
➢ Add support for the adapter and prepare yocto recipe
➢ Push contributions back to rust-vmm
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Task 4: status
GPIO & Console

➢ GPIO
➢ Enabled vhost-user device support in the virtio adapter

➢ Gerrit link:https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29390

➢ Added vhost-user-gpio in AGL: 
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29407

➢ Console
➢ Create vhost-user version of the driver (virtio-console only) 

that uses Linux kernel pre-existing device driver
➢ https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29545

➢ Enable vhost-user device support in the virtio adapter
➢ https://gerrit.automotivelinux.org/gerrit/c/src/virtio/virtio-loopback-adapter/+/29539

➢ Pull request on rust-vmm done
➢ https://github.com/rust-vmm/vhost-device/pull/601

https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29390
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29407
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29545
https://gerrit.automotivelinux.org/gerrit/c/src/virtio/virtio-loopback-adapter/+/29539
https://github.com/rust-vmm/vhost-device/pull/601
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Task 4: next steps

➢ Support existing pull request addressing community requests
➢ Pull request on rust-vmm: 

https://github.com/rust-vmm/vhost-device/pull/601

https://github.com/rust-vmm/vhost-device/pull/601
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Task 1-4 : virtio-loopback performance

➢ Measure virtio-loopback performance infrastructure targeting:
➢ Interrupt notification
➢ Throughput

➢ Virtio-loopback will then be compared with QEMU/KVM vhost-
user performance in the same conditions

➢ GPU, being a particularly interesting target performance wise, 
will be tested with specific benchmark

➢ Status: 
➢ Interrupt notification benchmark is almost final
➢ for the throughput benchmark we will use blk
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Task 1-4 : virtio-loopback performance

➢ Very preliminary first version of latency measurement
➢ Average: 0.901 ms
➢ Standard Deviation: 0.157 ms
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Task 5: activity description and next 
steps

➢ All the virtio-loopback development described so far should be 
executable also on the Amazon AWS cloud

➢ To do this, QEMU arm64 and x86_64 were added as a build 
target

➢ Next step
➢ Ensure that all the components keep building for all the 

targets (QEMU arm and x86_64 and reference hardware)
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Wrap up: Work in progress (WIP)

The list of the project task are:

Task 1: virtio-loopback support for virtio-GPU

– Trial/error QEMU integration

– Yocto recipes
Task 2: virtio-loopback support for virtio-sound

– Yocto recipes
Task 5: aws support

– Run virtio-loopback in AWS
 [Additional] virtio-loopback tests for AGL CI

– not started
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Wrap up: Completed

The list of the project task are:

Task 3 and 4  (CAN, GPIO, console and Cloud)

– Completed, code maintenance up to the end of the project
 [Additional] virtio-loopback infrastructure improvement and bug fixes

– Create vhost-user compatibility layer (no changes required in 
vhost-user protocol)

– Add Multi-queue support
 [Additional] multi device support demonstration
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Questions

?



contact@virtualopensystems.com

Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/

Demos: virtualopensystems.com/en/solutions/demos/ 

Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/

mailto:contact@virtualopensystems.com
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