
Michele Paolino
2023-01-175

m.paolino@virtualopensystems.com

www.virtualopensystems.com

AGL Native VIRTIO (Phase 2)
Status and next steps

2

Virtio-loopback phase 2 objectives

The list of the project task are:

Task 1: virtio-loopback support for virtio-GPU
Task 2: virtio-loopback support for virtio-sound
Task 3: virtio-loopback support for virtio-CAN
Task 4: virtio-loopback support for virtio-GPIO and console
Task 5: Apply Non-HV VirtIO to Cloud

For tasks 1-4, the target is to use existing vhost-user device
backends (GPU, sound, GPIO) or implement them when
needed (CAN and console).

3

Add adapter support for vhost-user-gpu
Use QEMU’s implementation ‘hw/display/virtio-gpu*’
Isolate & extract dependencies from QEMU
Re-write systems which are not ported from QEMU

➢e.g., QEMU character device abstraction
➢ Used to operate socket communication

➢Timer classes
➢Object oriented device initializations
➢QEMU Type system & parent/child relationships

Task 1: GPU - activity description

4

Adding rendering capability to the adapter (same as
QEMU)
Selected the SDL/EGL backend to set the scene

based on how QEMU does it (discarded GTK)
Extracted the dependent functionality from QEMU
– DisplayChangeListener API and SDL API

Integration of SDL window initialization on adapter

Task 1: GPU - activity description
Windowing system

5

 Adapter support for the virtio-gpu split in 3
parts

– Vhost-user-gpu interface

– Virtio-gpu device model

– SDL rendering

• Uses the real-GPU to render on the
host compositor

 Sequence of actions

– Virtio-loopback probes the virtio-gpu driver
upon adapter request

– Initial SDL window creation

– Weston & application targets the virtio-gpu
exposed DRM device files

– Frames are rendered by the adapter upon
‘contrib/vhost-user-gpu’ requsts

Task 1: GPU – architecture overview

Virtio-GPU
/dev/dri/card & renderD

6

 Virtio-loopback-adapter integration status

– Vhost-user-gpu interface [initial version done]

• QEMU structures/functionality used by virtio-gpu

– Virtio-gpu device model [WIP]

– SDL rendering [initial version done]

• Frames updates based on vhost-user-gpu requests
 Yocto integration

– Recipe creation [WIP]

• fixing libpixman/virgilrender dependency issues

Task 1: status overview

7

Task 1: status

1) virtio-loopback-adapter running and connected to the '/tmp/vgpu.sock' socket
provided by 'contrib/vhost-user-gpu' application

8

Task 1: status

2) weston compositor started on the DRM device probed by the virtio-loopback-adapter
kernel driver via the adapter
● WIP: The application does not recognize the proped driver by virtio-loopback and

fallbacks to the default gpu node

9

Task 1: status

3) glmark2 application startup. The command line includes the DRI_PRIME=1 to indicate
the DRM rendering node associated with this workload
● WIP: The application does not recognize the proped driver by virtio-loopback and

fallbacks to the default gpu node

10

Task 1: status

3) Rendering part of the virtio-loopback-adapter rendering the frames coming from the
'contrib/vhost-user-gpu' application

11

Task 1: conclusions and next steps

➢ Very challenging task (QEMU side only is ~4500 lines of code)
➢ Complexity comes from the different layers in play: QEMU device

abstraction, QEMU type system, vhost-user protocol, SDL API, etc.
➢ We have a first version of the QEMU vhost-user-gpu support in the adapter

➢ Able to register a new virtio-gpu device via vhost-user-gpu protocol
(communication between adapter and kernel is OK)

➢ Able to start rendering window (SDL initialization works)

Next Steps:
➢ Fix requests from virtio-GPU kernel model to the adapter GPU device model (to

fix differences between QEMU device models and adapter)
➢ Trial error process: the complexity of QEMU abstraction makes things hard

to debug
➢ We remain committed and we keep working

12

Task 2: sound activity description

➢ Work is based on a rust-vmm device under active development
➢ No crates.io availability yet
➢ Issues with cross-compilation

➢ Vhost-user-sound adapter support added
➢ Tested with AGL reference hardware
➢ Create multi-sound devices support

➢ [Additional task activity added during the project]

13

The demonstration (AGL ALS Tokyo) shows two completely separated sound stacks
running on top of virtio-loopback architecture:

➢ Two applications (“aplay”) route their audio via the

➢ Two virtio-loopback drivers and vhost-user-sound devices

Both audio streams converge in “pipewire” audio server which can manage/prioritize the
audio streams!

Task 2: demo on reference hardware

14

Task 2: sound status

➢ Development and functional testing completed

15

Task 2: next steps

➢ Create yocto recipe
➢ The lack of crates.io support for vhost-user-sound obliges us

to a “manual” approach
➢ Issues with cross compilation (rust AGL yocto support)

➢ Current recipe works with qemux86_64 target but doesn’t
with arm based targets

16

Task 3: CAN activity description

➢ Vhost-user-can device not available at the beginning of the task.
We need to create it

➢ Existing virtio-can driver RFC (SocketCAN) based on virtio-can
RFC code from OpenSynergy (https://lwn.net/Articles/934187/)
can be reused

➢ Enable vhost-user device support in the virtio adapter
➢ Yocto integration
➢ Push contributions back to rust-vmm

https://lwn.net/Articles/934187/

17

Task 3: CAN status

➢ Task 3 – virtio-loopback support for virtio-CAN
➢ Created vhost-user version of virtio-can driver that uses Linux kernel

pre-existing device driver (SocketCAN)
➢ Vhost-user-can Gerrit:

https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29
407

➢ Enabled vhost-user device support in the virtio adapter
➢ Gerrit link: https://gerrit.automotivelinux.org/gerrit/c/src/virtio/virtio-

loopback-adapter/+/29493
➢ Proposed the newly created device to rust-vmm communtiy

➢ Pull request on rust-vmm: https://github.com/rust-vmm/vhost-
device/pull/602

18

Task 3: next steps

➢ Support existing pull request addressing community requests
➢ Pull request on rust-vmm:

https://github.com/rust-vmm/vhost-device/pull/602

19

Task 4: activity description
GPIO & Console

➢ GPIO
➢ Vhost-user-device available
➢ Add support for the adapter and prepare yocto recipe

➢ Console
➢ No vhost-user-device available (same as CAN)
➢ Add support for the adapter and prepare yocto recipe
➢ Push contributions back to rust-vmm

20

Task 4: status
GPIO & Console

➢ GPIO
➢ Enabled vhost-user device support in the virtio adapter

➢ Gerrit link:https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29390

➢ Added vhost-user-gpio in AGL:
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29407

➢ Console
➢ Create vhost-user version of the driver (virtio-console only)

that uses Linux kernel pre-existing device driver
➢ https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29545

➢ Enable vhost-user device support in the virtio adapter
➢ https://gerrit.automotivelinux.org/gerrit/c/src/virtio/virtio-loopback-adapter/+/29539

➢ Pull request on rust-vmm done
➢ https://github.com/rust-vmm/vhost-device/pull/601

https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29390
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29407
https://gerrit.automotivelinux.org/gerrit/c/AGL/meta-agl-devel/+/29545
https://gerrit.automotivelinux.org/gerrit/c/src/virtio/virtio-loopback-adapter/+/29539
https://github.com/rust-vmm/vhost-device/pull/601

21

Task 4: next steps

➢ Support existing pull request addressing community requests
➢ Pull request on rust-vmm:

https://github.com/rust-vmm/vhost-device/pull/601

https://github.com/rust-vmm/vhost-device/pull/601

22

Task 1-4 : virtio-loopback performance

➢ Measure virtio-loopback performance infrastructure targeting:
➢ Interrupt notification
➢ Throughput

➢ Virtio-loopback will then be compared with QEMU/KVM vhost-
user performance in the same conditions

➢ GPU, being a particularly interesting target performance wise,
will be tested with specific benchmark

➢ Status:
➢ Interrupt notification benchmark is almost final
➢ for the throughput benchmark we will use blk

23

Task 1-4 : virtio-loopback performance

➢ Very preliminary first version of latency measurement
➢ Average: 0.901 ms
➢ Standard Deviation: 0.157 ms

24

Task 5: activity description and next
steps

➢ All the virtio-loopback development described so far should be
executable also on the Amazon AWS cloud

➢ To do this, QEMU arm64 and x86_64 were added as a build
target

➢ Next step
➢ Ensure that all the components keep building for all the

targets (QEMU arm and x86_64 and reference hardware)

25

Wrap up: Work in progress (WIP)

The list of the project task are:

Task 1: virtio-loopback support for virtio-GPU

– Trial/error QEMU integration

– Yocto recipes
Task 2: virtio-loopback support for virtio-sound

– Yocto recipes
Task 5: aws support

– Run virtio-loopback in AWS
 [Additional] virtio-loopback tests for AGL CI

– not started

26

Wrap up: Completed

The list of the project task are:

Task 3 and 4 (CAN, GPIO, console and Cloud)

– Completed, code maintenance up to the end of the project
 [Additional] virtio-loopback infrastructure improvement and bug fixes

– Create vhost-user compatibility layer (no changes required in
vhost-user protocol)

– Add Multi-queue support
 [Additional] multi device support demonstration

27

Questions

?

contact@virtualopensystems.com

Web: virtualopensystems.com

Products: http://www.virtualopensystems.com/en/products/

Demos: virtualopensystems.com/en/solutions/demos/

Guides: virtualopensystems.com/en/solutions/guides/

Research projects: virtualopensystems.com/en/research/innovation-projects/

mailto:contact@virtualopensystems.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

