
16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 1/13

Automotive Grade Linux compositor architecture

Collabora and Automotive Grade Linux

This document outlines the architecture and design for the Automotive

Grade Linux reference Wayland compositor.

This specification is still under development, and should not be considered

final.

¶ Background

¶ Client architecture

¶ Connecting to Wayland server

The Wayland server shall be able on the default wayland-0 socket. Clients

may connect to this socket and use the standard Wayland protocol with no

additional requirements.

¶ Compositor architecture

¶ Overall functional components

libweston backend: output management and display

libweston renderer: complex composition

libweston core: accounting and window list

AGL compositor: configuration handling and helper libraries

OEM window management: WM policy

Home screen: Special functional UI (w special protocol)

¶ Initialisation

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 2/13

Home Screen OEM WM AGL compositor libweston Backend System Debug

Initialise debug infrastructure

Debug infrastructure
can call custom logger
Use OEM tracing tool

Initialise libweston

Initialise debug scopes

Initialise backend

Backend configuration
can be provided

Log system information

Create and initialise device

Query available outputs

Output information:
name, status
supported resolutions

Return available outputs

Return list of available outputs

libweston initialised

Load OEM window management

Could be loadable
module?

Query available outputs

Return list of available outputs

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 3/13

Return list of available outputs

Apply output configuration

Configuration may be
static or file (INI)
or dynamic (OEM)
Need to provide:
enabled/disabled
resolution
remote
API TBC

Enable & position outputs

libweston provides
complex output
management for
advanced usecases
Allow direct OEM
use but also provide
easy wrapper for
simple usecases

Output configuration finished

Create WM layers (HS, panel, etc)

Layers mostly static
e.g. HS, app, critical
Can be changed
dynamically

Create WM layers

Install custom HS protocol

WM can provide own
custom Wayland protocol
for special clients
like home screen

Activate home screen client

Start home screen
with trusted connection
Allows access to
private protocol

WM initialised

Run compositor main loop

Poll for new events (clients, devices, timers)

Activate on new event

loop [libweston main loop]

Connect as Wayland client

Create HS app surface (Wayland/xdg)

New surface created (callback)

Surface is HS (OEM protocol)

Create new view, add to layer

Since private protocol
tells us this is HS, we
know to put it
in correct layer

Render HS content

UI is ready (OEM protocol)

UI ready

Sync AGL/Weston view lists

Translate from AGL
WM concept to Weston

Activate all outputs

Log current scene graph

Repaint, activate outputs

Weston view list used
Calculate best layout
Try overlay planes
Fall back to GPU
Send remote content

Log presentation method

Show output on screen

Async event wait
Replace OEM content
(e.g. vendor logo)

Display active event

Update complete

Log timing of display update

Update complete

Update complete, request new frame

New frame only
if requested by client

Home Screen OEM WM AGL compositor libweston Backend System Debug

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 4/13

¶ Window managment
Managed by AGL WM

Managed by libweston

Client

agl_view

zpos, surface-relative position

weston_view

opacity, position, size

agl_layer

name, ID, position, zpos, size

Recalculate libweston views from AGL WM policy

create weston_view list in proper order

Hand over to libweston for rendering

weston_surface

wl_surface

weston_desktop_surface

title, app ID, surface type

Client wl_surface
Client xdg_surface

¶ Work plan

1. Prepare JIRA tickets and changes to spec

1. Should this be developed as a parallel new spec, or evolution of

existing specs?

2. Auxiliary porting documentation to show clients how to port from

old to new frameworks

3. Where should architecture document live? Perhaps alongside code,

as living document: track current status of codebase

4. Review 1.0 HMI spec in Confluence, including usecases

2. Create AGL reference compositor repository

1. Prepare generated documentation to be integrated with overall AGL

documentation site

2. Initial code from Weston repository

3. Prepare for synchronization with new libweston features from

upstream

3. Create AGL CIAT tests

1. Ensure reference compositor is also buildable on top of AGL UCB

2. Ensure reference compositor runs and successfully displays on

reference hardware

4. Split reference window-management design into two models

1. In-process model shall be preferred and model for initial

development

https://confluence.automotivelinux.org/pages/viewpage.action?pageId=5472286#RequirementSpecificationforV2.0(Draftv0.1)-3.Application/HMILayer

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 5/13

2. Support example plugin using ivi_wm protocol interface for

external window management

5. Port reference client homescreen UI to new architecture

1. Develop private Wayland extension for supporting homescreen as

external client (similar to desktop-shell)

2. Start and control homescreen client process from Weston

3. Bring into compositor repository, or leave external?

6. Develop 'context' API to support context-aware policy

1. Is the car stopped, moving, in gear?

2. Geolocation

3. Can we source this information from Signal Composer?

7. Create list of window management usecases and provide example

implementations

1. Push surface to front (switch application)

2. Animate between split-screen and full-screen usecase

8. Review support for gesture recognition and bindings

1. Should support swipe-to-switch-application usecase

2. Ensure no content is shown before all homescreen content is ready

9. Implement extension to libwayland-server or libweston API to

query SMACK label of client

1. Submit support upstream for release

10. Implement configurable tracing control

11. Create work plan for multiple hardware backends

1. Port old cluster demo to multi-backend work

12. Develop agl_foreign_subcompositor_v1 extension for nesting

surfaces between multiple processes, and prove this support in a real

application

1. Do we have a sample application we can use for this, or someone

who can volunteer to port their own application?

13. Investigate and develop integration with CAN signaling input

1. Define list of inputs required to forward

2. Does this need to be per-vendor / per-device?

3. Mainloop integration with reference compositor

14. Investigate surface-criticality extension

1. Need to query app framework for criticality role: what is the API to

do this?

2. Need to review, merge, and extend explicit fencing support such

that low-priority clients do not pre-empt critical clients

15. Select text-input extension to use and implement reference on-screen

keyboard within compositor

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 6/13

1. Qt has a capable OSK we could re-use, but may need fixing and/or

updates

¶ Follow-up work

1. Roadmap for application framework lifecycle work

1. Follow app FW lifecycle discussion (is this scheduled?)

2. Feed surface visible/active status back into app FW

2. Roadmap for notification proposal

1. Review Dominig's presentation from Yokohama F2F about

notifications

2. Much more complex than just pop-ups, e.g. notifications from

stopped applications, application badges (message app icon with

number of unread messages), status banners (album art for

currently-playing music)

3. Surface criticality extension

1. What does critical content mean? Is it just window management -

force window to front - or other?

2. Align vocabulary and permissions with audio framework.

3. For window management, 'priority' better wording than 'emergency'

or criticality; usecases for CarPlay / Android Auto which should

prevent any other content from displaying above it.

¶ Functional and design requirements

The following have been identified as functional requirements which must

be fulfilled by the reference AGL compositor.

1. OEM customisable and replaceable HMI/UI

1. The home screen design shall allow the OEM to either customise the

provided HMI user interface, or replace the provided interface with

their own, using any available client toolkit.

2. The window manager design shall allow the OEM to either

customise the provided window management policy, or replace the

provided policy implementation with their own.

3. The window manager design shall allow the implementation to

query the client SMACK label, allowing security policy to be enforced

for window management.

4. The reference HMI implementation shall provide for both fullscreen

and split-screen application usecases, with top and bottom bars for

system UI panels.

5. The reference HMI implementation shall provide for a visual list of

applications, to allow users to show a list of applications and

switch between them.

2. OEM customisable input actions

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 7/13

1. The implementation shall be able to capture particular key presses

(e.g. 'radio' button) and take action based on these presses: either

internal actions, or routing the presses to specific applications (e.g.

route play/pause button to media player).

2. The implementation shall be able to recognize particular touch

gestures (e.g. swipe/zoom) and take action based on these gestures

(e.g. swipe to switch active application).

3. Window management API shall be based on layers and views

1. Similar to existing ivi_wm and libweston API: views are ordered

and grouped within layers, layers are ordered and grouped on

outputs

2. Integer-based helper API shall be provided for easier management

4. Display server and window management API must not assume display

size or orientation

1. Display server must natively support different display sizes, and

allow display size to be configured.

2. Display server must support different orientation

(portrait/landscape) and allow orientation to be configured.

5. Server applies policies from changing context (situation, drive engage,

country, ...)

1. The server shall make it possible for OEM modules to subscribe to

events from CAN or other (e.g. geolocation) signals, allowing

changes to be made when context changes (e.g. hide media

playback when gear is engaged).

2. The OEM modules shall be able to prohibit particular applications,

or classes of applications, from running at any time, and to forcibly

switch applications or show notifications.

3. The above requirements should be handled by OEMs, or activity

manager, or some other component/EG.

6. Assurance that critical content is presented rapidly

1. Content declared as critical shall be presented immediately, and

not be blocked by non-critical clients.

7. Server preserves previous content until new content is ready

1. If OEM content (logo) is being shown, when display server starts,

this content shall not be replaced until the full user interface is

ready to be shown.

2. As in below requirement, when the full user interface is ready to be

shown it shall be presented immediately and in full.

3. As an exception, when the reverse camera is being shown, the HMI

shall not be shown until reverse camera is disengaged.

8. Every transition frame correctly shown

1. During animations and transitions, each frame shown shall be a

correct intermediate step for the given time in the animation.

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 8/13

2. Frames showing incomplete or incoherent content shall not be

shown to user.

9. Reference compositor can run without support for X11 clients or

dependency on X11

1. The reference compositor must not have any dependency to another

window system. It must be possible to run AGL in an environment

where only Wayland is supported.

10. Nested Wayland and X11 backends (local development usecase)

1. Optionally, these 'nested' backends shall be provided for

development and testing purposes.

11. DRM/KMS backend (native display usecase)

1. The reference backend shall use kernel modesetting (KMS) and the

atomic modesetting API for display control.

2. This backend shall use hardware overlay planes for composition

where possible, to reduce power requirements from GPU and

increase overall image quality and reliability.

12. Support for vendor-provided display backends (virtualization or multi-

ECU)

1. Vendors with their own display backends shall be able to implement

separate display backends, e.g. for display in a virtualized or multi-

ECU usecase.

13. Support for EGL / OpenGL ES composition inside display server

1. For advanced effects or when overlay planes are not usable, the

server shall use EGL and OpenGL ES 2.0 for final composition.

2. This will be implemented using the GBM API to use EGL on top of

KMS.

14. Support for vendor-provided rendering backends inside display server

(2D compositor IP block)

1. Many automotive platforms support 2D composition using a

dedicated IP block and interfaces such as V4L2. The reference server

shall make it possible to implement a separate renderer.

2. This renderer should be designed with thought to virtualized

usecases.

15. Support for software-only composition inside display server (hardware

bring-up / testing)

1. Software-rendered clients shall be supported at all times, even

when display server is hardware rendered.

16. Support for input from common vehicle sources

1. Direct touchscreen input, taken from libinput and evdev

devices

2. CAN inputs such as buttons, knobs, wheels, sourced from AGL

Signal Composer

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 9/13

3. On-screen keyboard to provide text input from touchscreens

17. App framework signal/event forwarding (CAN/voice user input)

1. The compositor shall provide forwarding of CAN inputs which needs

to be routed to the currently-active client, or according to window

management policy, e.g. steering wheel yes/no buttons, scroll wheel,

previous/next track.

2. The compositor shall not provide forwarding of CAN inputs which do

not be routed according to any policy, e.g. steering wheel

orientation, current temperature, accelerator.

18. Support for standardised Wayland extensions

1. wl_output and xdg_output_v1 shall be present to describe

display devices

2. xdg_wm_base shall be present for window management; clients

should not use the deprecated ivi-application interface

3. wl_subcompositor shall be present to support combination of

multiple surfaces into a single presentable entity

4. zxdg_importer_v1 , zxdg_exporter_v1 ,

agl_foreign_subcompositor_v1 , shall be present to support

combination of multiple surfaces from different client processes

5. wl_shm shall be supported for software-rendered clients, with at

least WL_SHM_FORMAT_XRGB8888 and WL_SHM_FORMAT_ARGB8888

6. zwp_linux_dmabuf_v1 should be present to support zero-copy

presentation of hardware-generated content from clients

(media/GPU)

7. wp_presentation shall be present to support presentation timing

feedback to clients

8. wp_viewporter shall be present to support cropping and scaling

of content

9. wl_seat shall be present for keyboard, button, wheel, and touch

input

1. wl_keyboard shall provide key and button events

2. wl_touch shall provide direct touchscreen events

3. wl_pointer shall provide wheel and knob events

10. TBC: One of the text_input family of extensions shall be present

to provide text input from an on-screen keyboard

19. Inter-process 'foreign' surface relationships

1. Clients shall be able to compose their user interface from multiple

processes.

2. The wl_subcompositor interface allows clients to compose a user

interface from multiple surfaces, e.g. media and UI surfaces which

are layered and tethered to each other. However, these surfaces

must be from the same client connection.

3. The zxdg_importer_v1 and zxdg_exporter_v1 interfaces allow

clients to transfer handles to surfaces between different processes,

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 10/13

however they only allow usage as XDG shell dialogs.

4. An agl_foreign_subcompositor_v1 extension shall be developed

which allows usage of the wl_subcompositor protocol with foreign

surfaces. This extension shall be made generally available.

5. Example usecases: media player with media playback and UI inside

separate processes.

6. Rich notification content: applications may embed notifications

and content (e.g. media album art) inside notification bar controlled

by HMI / System UI.

20. Support for EGL / OpenGL ES clients using standard Wayland EGL

platform

1. Clients using libwayland-egl and EGL_KHR_platform_wayland

shall be able to display content.

21. Client request tracing available through AGL monitoring

1. The architecture document shall define a set of trace sources which

will be available through standard AGL logging, monitoring, and

tracing, frameworks. These sources shall be customizable at

runtime.

¶ Assumptions

1. The Wayland server is a critical system process, and must be reliable

If the Wayland server crashes, no new content can be presented. A

wait to restart the server may result in a delay showing new content

which would violate safety constraints. Therefore, it is not

acceptable for the server to crash in regular use, and a crash or loss

of responsiveness shall constitute a system failure event.

2. Window management constitutes a critical component of the Wayland

server

The window manager is responsible for policy decisions

determining the final presentation and display of on-screen

content. If the window management module is unresponsive,

content from existing clients may continue to be presented,

however new surfaces or clients will not be presented. As per the

above requirement, this constitutes a critical failure as it may

violate safety constraints requiring prompt presentation of certain

types of content.

¶ Discussion: May 2019 F2F

1. Do we have our OEM usecases?

Can we create some?

Integration with cluster IC content; multi-ECU punchout

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 11/13

Ohiwa-san has some usecases listed in the 2.0 HMI spec on

Confluence

2. What are our critical outcomes?

Need to list these this week.

3. What are the most critical areas to document and illustrate?

Window manager policy: what is the workflow from application

creating a surface, to how the WM places the content in a particular

spot?

Full-screen to split-screen usecase

'Cut out' areas for system UI

Placement of notification

HiDPI support

XDG configure event: how does the client know what size it

should be, and what orientation it should render in? Finish up

sequence diagram, and how does this integrate with IVI shell?

XDG active and focus events: app framework lifecycle

management should understand app status - do we need to push

information to AFW?

Which parts of xdg-shell can applications rely on to function?

Fullscreen, move/resize, etc, denied by server.

How to expose new protocol to clients?

4. Timelines: when can we make the cut over to replace the HS/WM API?

5. Is there a particular configuration-file format which we should be using?

Would be nice to have an include directive, or a config.d

directory to compose multiple files together.

6. Do we need special handling for hardware paths for backup camera?

Assume we may be running on a hypervisor?

7. Configure screen regions for system UI

Take diagram from HMI spec?

Support changing size of split-screen regions

8. Do we need to port the cluster demo to multi/dynamic-backend API?

Resolved: yes. This is part of the CES demo.

How should we communicate from the application to the server that

the surface should be displayed remotely?

9. How do we communicate surface criticality from application to server?

Do we need a new extension to allow privileged clients to declare a

surface is critical?

Requirement for app framework: role to allow client to present

critical content.

Document requirement for single active critical surface at one time.

10. Do we need to support changing orientation dynamically?

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 12/13

Automotive Grade Linux / Collabora - Automotive Grade Linux compositor architecture

Resolved: no. We do not (currently) need to dynamically rotate the

display.

11. What client protocol do we expose to handle popups and notifications?

Including changeable banners, e.g. currently-playing track and

album art.

Review Dominig's presentation on notifications from Yokohama.

Create sequence diagram / decision tree for popup-display policy.

How do we deal with notifications, e.g. from inactive apps, launching

those apps, docking to systray?

12. Do we need support for ivi-application clients using the IVI ID agent?

Proposed resolution: no. These clients are deployed in the field,

however the proposed changes to window management and home

screen will already require a change in these clients. This means

that they can change to use the XDG shell at the same time.

13. Need to change demo Qt apps for resolution/orientation independence

Some simple apps can be made independent by using dynamic

layout

Other components (e.g. homescreen, dashboard) will need separate

layouts for portrait/landscape

Would need to have done for landscape CES demo

14. Do we need to research input event delivery restrictions?

We may need to implement restrictions for trusted-UI applications

which restrict input delivery. Do we need a framework for this? Prior

art already from cluster displays.

¶ Document revision history

Version Date Author Notes

0.9 10th July,
2019

Daniel
Stone

Updated for ALS F2F

0.3 8th May,
2019

Daniel
Stone

Updated from Wednesday F2F
discussion

0.2 7th May,
2019

Daniel
Stone

Updated from Tuesday F2F discussion

0.1 6th May,
2019

Daniel
Stone

Initial revision of compositor
architecture document

16/07/2019 Automotive Grade Linux compositor architecture

localhost:8081 13/13

