
AGL Compositor Architecture

Daniel Stone
daniels@collabora.com

Open FirstOpen First

Hi, I'm Daniel

Graphics lead at Collabora
Open-source consultancy est. 2005
Wayland core developer

3

Outline and agenda

4

Outline and agenda
● Share current AGL compositor architecture
● Window management API and concept
● OEM customisation
● Outline current progress and next plans

5

Current compositor architecture

6

AGL compositor architecture
● Development has focused on window management and
output management

● Outline window management concept and OEM API
● Outline homescreen development

7

Window management concept
● WM based on output/layer/surface (like IVI shell)
● New concept from Weston: surface view

– Views position an output within a layer

– Multiple views allow to show surface in different places

– Crucial for remoting: can create new view for other

display or ECU

– Window manager always controls views!

8

Window management concept
● Not so different from previous IVI shell!
● Key difference: give OEMs power to manage windows
themselves with full API

● Offer callback into OEM module for every window event

– new window created

– window content updated

– window removed

9

Surface/view
relationship

● Compositor creates
layers for grouping

● Positions layers
within compositor
space

● Compositor creates
views for each
surface to display

● Positions views
within layers

● AGL IVI compositor
API to manage view
creation and
positioning

● Display of views
handled by
libweston

10

Relationship
between

libweston and
AGL views

11

Why two separate lists?
● Keep IVI concept of Z positioning
● Flexible positioning: allow views to be dynamically enabled/
disabled

● Easy integration with OEM WM policy

– AGL view API can be stable for OEM plugins

● AGL core compositor will maintain translation between two

worlds: recalculate libweston list after WM changes

12

Window management progress
● Core concepts implemented in working compositor
● Using IVI shell zpos concept
● AGL API to allow layers to be created, positioned, hidden

– Layers can be dynamically added/removed
● AGL API to allow views to be created, positioned, hidden

– Can be used by OEM WM policy plugins

13

Output configuration
● Basic output management compatible with Weston
● Allow outputs to be enabled/disabled, resolution set

– depending only on output name

● More advanced output configuration API needed

● Weston already offers complex output configuration API

● Propose to have split APIs: simple and advanced

– OEM can decide depending on usecase

14

Compositor startup sequence

15

Compositor startup sequence
● The diagram doesn’t fit on a single slide …
● Plan to reuse existing Weston documentation framework to
include these diagrams with code documentation

● Produce HTML output for AGL documentation site
● … and now to my browser

16

Development plans

17

Window management & home screen
● Continue development of WM/HS implementation

– Window management API largely in place

– Home screen (AGL reference) porting WIP: end of July

– Custom HS protocol to allow multiple windows

● Initial output management API implemented

● Next step after WM: app switching

18

Next work
● Aim to show functional home screen by end of July
● Should take ‘do not overwrite vendor logo’ requirement into
account

● After home screen is complete, continue documenting WM/
HS APIs for external users

● Develop input manager concept starting in August with
support from others: hot keys, input routing

● Need separate topics in JIRA for all of these

19

Thankyou!

daniels@collabora.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

