AGL Compositor Architecture

Daniel Stone
daniels@collabora.com

COLLABORA
’O Open First



COLLABORA
O

, I'm Daniel

Graphics lead at Collabora

Wayland core developer

Open First



COLLABORA
40,

Outline and agenda



Outline and agenda

* Share current AGL compositor architecture
°* Window management APl and concept

* OEM customisation

Outline current progress and next plans

COLLABORA
*O Open First |,



COLLABORA
40,

Current compositor architecture



AGL compositor architecture

* Development has focused on window management and

output management
* Outline window management concept and OEM API

* Outline homescreen development

COLLABORA
’O Open First



Window management concept

°* WM based on output/layer/surface (like IVI shell)
* New concept from Weston: surface view

— Views position an output within a layer

— Multiple views allow to show surface in different places

— Crucial for remoting: can create new view for other
display or ECU

Window manager always controls views!

COLLABORA
*O

Open First



Window management concept

* Not so different from previous IVl shell!
* Key difference: give OEMs power to manage windows

themselves with full API
* Offer callback into OEM module for every window event

— new window created
— window content updated

- window removed

COLLABORA
*O Open First



Surface/view

relationship

COLLABORA
*O

Compositor creates
layers for grouping
Positions layers
within compositor
space

Compositor creates
views for each
surface to display
Positions views
within layers

AGL IVl compositor
APl to manage view
creation and
positioning

Display of views
handled by
libweston

Managed by libweston

weston_surface
(wl_surface)
width, height
current buffer

weston_surface
(wl_surface)
width, height
current buffer

weston_surface
(wl_surface)
width, height
current buffer

Managed by AGL

weston_layer

X, ¥ position for output
Z position

weston_view

X, ¥ position in layer
z position in layer

weston_view

X, y position in layer
Z position in layer

weston_layer

X, ¥ position for output
Z position

weston_view

X, y position in layer
Z position in layer

Open First




AGL compoaositor

libweston . ¥ : .
store list of views and configuration
weston_desktop_surface agl_view \
(xdg_surface) ' ' Z position in layer
surface type position before/after other view
surface title shown/hidden
surface change A X
7 m) | /link to layer ~

weston_surface

Relationship S o e
be twee n current buffer
> libweston and - l

recalculate total view list

| _ ~__ consider ordering of layers
stored in absolute list order < ¢ and views

used by Weston core to display o
final Ul result >

COLLABORA
’O Open First

10




Why two separate lists?

* Keep IVl concept of Z positioning
* Flexible positioning: allow views to be dynamically enabled/

disabled
* Easy integration with OEM WM policy

— AGL view API can be stable for OEM plugins
* AGL core compositor will maintain translation between two

worlds: recalculate libweston list after WM changes

COLLABORA
*O Open First



Window management progress

* Core concepts implemented in working compositor
* Using IVl shell zpos concept
* AGL API to allow layers to be created, positioned, hidden

— Layers can be dynamically added/removed
* AGL API to allow views to be created, positioned, hidden

— Can be used by OEM WM policy plugins

COLLABORA
*O Open First



Output configuration

* Basic output management compatible with Weston
* Allow outputs to be enabled/disabled, resolution set

— depending only on output name

* More advanced output configuration API needed

Weston already offers complex output configuration API
* Propose to have split APIs: simple and advanced

— OEM can decide dependin

COLLABORA
’O Open First

oNn usecase




COLLABORA
40,

Compositor startup sequence

14



Compositor startup sequence

The diagram doesn’t fit on a single slide ...

* Plan to reuse existing Weston documentation framework to
Include these diagrams with code documentation

* Produce HTML output for AGL documentation site

° ... and now to my browser

COLLABORA
*O Open First



COLLABORA
40,

Development plans

16



Window management & home screen

* Continue development of WM/HS implementation
— Window management API largely in place
~ Home screen (AGL reference) porting WIP: end of July
— Custom HS protocol to allow multiple windows

° Initial output management APl implemented

* Next step after WM: app switching

COLLABORA
*O Open First



Next work

* Aim to show functional home screen by end of July

* Should take ‘do not overwrite vendor logo’ requirement into
account

° After home screen is complete, continue documenting WM/
HS APIs for external users

* Develop input manager concept starting in August with
support from others: hot keys, input routing

°* Need separate topics in JIRA for all of these

COLLABORA
*O Open First



Thankyou!

daniels@collabora.com

COLLABORA
*O Open First



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

