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Outline and agenda

* Share current AGL compositor architecture
°* Window management APl and concept

* OEM customisation

Outline current progress and next plans
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AGL compositor architecture

* Development has focused on window management and

output management
* Outline window management concept and OEM API

* Outline homescreen development
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Window management concept

°* WM based on output/layer/surface (like IVI shell)
* New concept from Weston: surface view

— Views position an output within a layer

— Multiple views allow to show surface in different places

— Crucial for remoting: can create new view for other
display or ECU

Window manager always controls views!
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Window management concept

* Not so different from previous IVl shell!
* Key difference: give OEMs power to manage windows

themselves with full API
* Offer callback into OEM module for every window event

— new window created
— window content updated

- window removed
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Surface/view

relationship
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layers for grouping
Positions layers
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space
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surface to display
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within layers
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AGL compoaositor

libweston . ¥ : .
store list of views and configuration
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surface title shown/hidden
surface change A X
7 m) | /link to layer ~
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be twee n current buffer
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recalculate total view list

| _ ~__ consider ordering of layers
stored in absolute list order < ¢ and views

used by Weston core to display o
final Ul result >
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Why two separate lists?

* Keep IVl concept of Z positioning
* Flexible positioning: allow views to be dynamically enabled/

disabled
* Easy integration with OEM WM policy

— AGL view API can be stable for OEM plugins
* AGL core compositor will maintain translation between two

worlds: recalculate libweston list after WM changes
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Window management progress

* Core concepts implemented in working compositor
* Using IVl shell zpos concept
* AGL API to allow layers to be created, positioned, hidden

— Layers can be dynamically added/removed
* AGL API to allow views to be created, positioned, hidden

— Can be used by OEM WM policy plugins
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Output configuration

* Basic output management compatible with Weston
* Allow outputs to be enabled/disabled, resolution set

— depending only on output name

* More advanced output configuration API needed

Weston already offers complex output configuration API
* Propose to have split APIs: simple and advanced

— OEM can decide dependin
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Compositor startup sequence

The diagram doesn’t fit on a single slide ...

* Plan to reuse existing Weston documentation framework to
Include these diagrams with code documentation

* Produce HTML output for AGL documentation site

° ... and now to my browser
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Window management & home screen

* Continue development of WM/HS implementation
— Window management API largely in place
~ Home screen (AGL reference) porting WIP: end of July
— Custom HS protocol to allow multiple windows

° Initial output management APl implemented

* Next step after WM: app switching
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Next work

* Aim to show functional home screen by end of July

* Should take ‘do not overwrite vendor logo’ requirement into
account

° After home screen is complete, continue documenting WM/
HS APIs for external users

* Develop input manager concept starting in August with
support from others: hot keys, input routing

°* Need separate topics in JIRA for all of these
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Thankyou!

daniels@collabora.com
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