Speech EG Architecture

® Background
® Definitions
© Voice Services
© Voice Agent
Purpose
Assumptions
Customer Requirements
High Level Architecture
© High Level Components
o Architecture
® High Level Work Flow
® Bindings
© High Level Voice Service
® 1) agl-service-voice-high
® Current Architecture
© VoiceAgents Module
© Core Module
O Capabilities Module
® Sequence Diagrams
© OnLoad
O StartListening to Audio Input & Events
State Diagram
API
® Events
= 2) Multi Modal Interaction Manager
® Message Structure

® Topics

° DIAL

= API

® Messages
© NAVIGATION

" API

" Messages
° GuiMetadata

" API

" Messages
= 3) Configuration
* API
o afb-voiceservice-wakeword-detector
© Voice Agent Vendor Software
= 1) voice-agent-binding
* API
® Events
® Domain Specific Flows
© Climate Control (CC)
® Use cases
® Set the cabin temperature
® Get the cabin temperature
© Navigation
® Use cases
® Set Destination
® Cancel Navigation
© Voice initiated
® Select Alternate Route
® Technical References & Demos

Background

Automotive Grade Linux (AGL) is a collaborative open source project that is bringing together automakers, suppliers and
technology companies to accelerate the development and adoption of a fully open software stack for the connected car.
Being a part of speech expert group, Amazon (Alexa Automotive) team intends to collaborate to help define the voice
service APIs in AGL platform.

Definitions

Voice Services



These are standard set of APIs defined by the AGL Speech EG for users and applications to interact with voice
assistant software of their choice running on the system. The API is flexible and attempts to provide solution
for uses cases that span, running one or multiple voice assistants on the AGL powered car head units at the
same time.

Voice Agent

Voice agent is a virtual voice assistant that takes audio utterances from user as input and runs It's own speech
recognition and natural language processing algorithms on the audio input , generates intents for applications

on the system or for applications in their own cloud to perform user requested actions. This is vendor-supplied
software that needs to comply with a standard set of APIs defined by the AGL Speech EG to run on AGL.

Purpose

The purpose of this document is to propose the Voice Service and Voice Agent APIs for AGL Speech framework, and
evolve the same into a full blown multi-agent architecture that car OEMs use to enable voice experiences of their choice.

Assumptions

® One voice agent will not possess all the capabilities that customer desire. So, more than one voice agent needs
to exist on the platform and they need to work together at times to fulfill a customer ask.

® One voice agent will not be able to properly detect all the explicit invocation words (wake words) of other
voice agents. For example, Amazon best optimizes the machine learning models for the Alexa wake word. Same goes with other voice agent
vendors.

Customer Requirements

Customer A: As a IVI head unit user, | would like to have the following experiences,
® Experience A: With only one active voice agent.

© | should be able to select the active voice service agent.
o "Alexa, whats the weather" and "whats the weather" should be routed to the user selected voice agent.

* Experience B: Multiple active voice agents use cases.
© Invocation
= Explicit Voice : Speech framework will pick the appropriate agent based on keyword detection to perform a task.
For this approach to work neatly all the voice agents should have a wake word.
® |f | say, "Alexa, whats the weather", my utterance should be routed to Alexa voice agent on the device.

" Implicit Voice : Speech framework will pick the appropriate agent based on intent detection to perform a task.
The speech request should be routed to the best agent responsible for the handling the intent.
® | should be able to assign appropriate agents to select set of tasks like Navigation, Calling, News, Car control, Local
Music, Calendar etc.
® If I don't explicitly assign an agent to a task, then the system should route my utterance to the best agent capable of
handling the request.

" Multi Modal Interaction
® (U) Agent A, Route me Starbucks nearby
A list Starbucks nearby are presented to user.
(U) Agent A says Select first one OR Clicks on the first item in the list
(Agent A) Launches Navigation App with geocode of selected Starbucks

® Fallback : Speech framework will fallback to a different voice agent if the chosen one fails to fulfill a request.
® Silently route my utterance if the chosen agent fails to perform a task.
® Inform me using speech that Agent A failed to fulfill the request and so its trying Agent B.

® Proactive : Any voice agent should be able to initiate a dialog or perform an action without a corresponding implicit or
explicit user invocation.
® Based on system behavioral changes. Agent A warns user that "Tire pressure is low" or " Maintenance is due, do you
want to schedule it ? ".
®* When Agent A does a restaurant reservation, then Agent B can offer a parking spot near that restaurant if its assigned
and if it possess that capability.



© Multi-turn Dialog Use cases
" No switching to a different voice agent when | am in an active dialog with some other agent.

= Agent switching based on keyword detection
® (User) Agent A book flight ticket to Seattle
® (Agent A) What time you want to leave?
(User) Agent B, what time my last meeting ends on Mon
(Agent B) 5:30
(User) Agent A book ticket after 6:30 pm

= Agent switching based on intent detection
® (User) Book flight ticket to Seattle
(Agent A) What time you want to leave?
(User) What time my last meeting ends on Mon
(Agent B) 5:30
(User) Alright, book ticket after 6:30 pm

Customer B: As a car OEM,

® | should be able control the agents that run on my system, their life times and their responsibilities.

Customer C: As an AGL Application developer,

® | should be able to use AGL Speech framework's to voice enable my application.

Customer D: As a 3rd party Voice Agent Vendor,

® | should be able to follow the guidelines of the AGL speech framework to plugin my voice agent.
® | should be able to follow the guidelines of the AGL speech framework to plugin my wake word solution.
® | should be able to follow the guidelines of the AGL speech framework to plugin my NLU engine.

High Level Architecture

Quoting AGL documentation,

http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/signaling/architecture.html#architecture®

“Good practice is often based on modularity with clearly separated components assembled within a common framework. Such modularity ensures
separation of duties, robustness, resilience, achievable long term maintenance and security.”

High Level Components


http://docs.automotivelinux.org/docs/apis_services/en/dev/reference/signaling/architecture.html#architecture%E2%80%9C

AGL Applications

\ 4 v
High Level Voice Service APls @

Core Execution Handler

Route the incoming speech request to the appropriate voice agent based on
‘Wakeword or Implicitintent detection. Opens audio input channel and signals|
appropriate sub systems or voice agents whenever they need to consume
audio input to perform tasks. Encapsulates the speech dialog states (IDLE,
LISTENING, SPEAKING, THINKING etc ) of each voice agent and
publishes aggregated dialog state evens to the application layer.

Encapsulates capabilities of each voice agent running on the device.

MultiModal Interaction Management
Defines and implements a standard message based protocol for
communication between Voice Agents and Applications on the device.

Configuration/Settings Management

Defines configuration that determine the functioning of this system. For e.g
set active voice agents, map wakeword to voice agents, map
roles/capabilities to voice agents, maps system apps to voice agents,
language, etc.

Audio/Visual Focus Management

Manages the audio and visual focus of different active voice agents running
on the system. Any voice agent by design will need to permitied by this
‘manager before proceeding with audio rendering or visual display. Most of
its business logic will apply to scenarios where there are multiple voice
agents running on the system.

Text To Speech

Has its own text to speech. Mainly used for fallback use cases to inform
user about agent switching, inform user who is trying to invoke a disabled
agent etc.

foice Agent Software ven@
Init/Start/Stop

Voice agent will perform initialization on service boot. It will respond to
start and stop listening commands from high level voice service layer in
most cases Lo proceed with analysis.

Audio Input Analysis

Receives audio as input and uses its own ASR (Automatic Speech
Recognition), NLU (Natural Language Processing) algorithms to generate
the intent

Response Generation

Generates a context based response for each audio input request from the
user. The response can in the form of TTS (Text to Speech) response, TTS
based multi turn dialog initiation, music playback, visual template, or
‘command messages to specific application on the device

MultiModal Interaction Handler

A voice agent wil register to and handle the app contextual information
that is delivered in the form of messages/events by the high level Voice
Service's MuliModal Voice Interaction Manager. This will power uses

cases that relate to proactive invocation.

Authentication

Most of the voice agents will need to communicate with their own cloud
service APIS to analyze audio input and generate responses. This needs
voice agent specific authentication and hence the voice agent will be
responsible for packaging their own auth binding APTs and UT with the
agent binaries.

Publish Voice Agent Events

‘Voice agent will generate appropriate events for informing its dialog, auth
and connection states, capabilities etc to the high level voice service. These
states are used by high level voice service's execution controller module.

‘Wake Word Engine/ Models

Voice agent will provide their own wake word engine o machine leart
‘models for their wake words for high level voice service to make explicit
invocation decisions.

Architecture



AGL
(Applica{ions
O S
Hvac Ul R Dialler Ul Music Player v%:pﬁ:sm (Open Source)
T I I I [ PushToTalk Vifios Dlielog U1
i oice Dialo
Service g
Hvac Binding Navigation Dialer Playback Template
Binding Binding cu‘c'v‘:jv‘::\gen ‘Binding
4 N

App Logic calls to framework bindings Listens to dialog events
like Listening, speaking, Thirking
Appiications wil interact to tisplay UL
with voice agent using
this high level voice service's mediator APIs created

for each domain like Navigation, PhoneControl efc. —Thisinterface wil define
a bridge {0 voice agen.
Request fouting and handing.
y

AGL App Framework
(Open Source)

Voice Services Framework
Network Info Provider
afb-voiceservice-highlevel 8 - '
\ 4 v = -4
Execution
Text To Speech Service Generic Event Handler
L. \ ) Sivscrpten ol oEMcistmzane Cordunsion
N 5 Multi Modal afb-voiceservice-
Interaction / > wakeword-detector
Manager
Audio Focus Visual Focus
ST Manager Manager \When wakeword
is detected
s system wil igger
d helf iting decis
Other System * c and help in routing decision.
Services \ ’
\ Intents/Messages I
\ delivered to Awﬁganans wakeword models

Voice Agent API calls,
s

andvice versa thiough he Interacton manager. == \csea et Event would be Lploaded
tothe wake word handier
\ x by different vendors.

A 4 1 Vendor Software
IS0 USE SO r L (Open Source or Licensed
framewiork bindings directy. > Q Software)
Voice Agent(s)
(Cloud or Onboard ASR/NLU) Wake Word Model(s)

[ ActBindings

The Voice Services architecture in AGL is layered into two levels. They are High Level Voice Service layer and vendor software layer. In the above
architecture, the high-level voice service is composed of multiple bindings APIs (colored in green) that abstract the functioning of all the voice assistants
running on the system. The vendor software layer composes of vendor specific voice agent software implementation that complies with the Voice Agent
Binding APIs.

High Level Work Flow

Experience A: With only one active voice agent at a time. User selected the active agent.

Assumption: Voice agents are initialized and running, and are discoverable and registered with afbvoiceservice-highlevel. afb-voiceservice-highlevel
binding has subscribed to all the events of active voiceagent-binding and vice versa. afb-voiceservice-highlevel is assigned the audio input role by the
audio high level binding.

* afb-voiceservice-highlevel startListening API will be triggered by Push-To-Talk button invocation.
* afb-voiceservice-highlevel signals afb-voiceservice-wakeword-detector binding running in same binder context to startListening. The wakeword
detector binding uses PCM APIs to read the audio input.
® afb-voiceservice-highlevel will move from IDLE to LISTENING state. The Voice Dialog Ul app would show a voice chrome or similar Ul indicating
the user to start speaking.
® User starts speaking. afb-voiceservice-highlevel will wait for a few milliseconds for the afb-voiceservice-wakeword-detector to come back with on
WakeWordDetected event.
o If afb-voiceservice-wakeword-detector doesn't detect wake word within the aforementioned timeout, then afb-voiceservice-highlevel will
pick the active agent selected by user to process the audio input.
© If afb-voiceservice-wakeword-detector detects the wake word, then afb-voiceservice-highlevel will get onWakeWordDetected event with
the offset of position from which the voice agent should start buffering the audio & with the wake word string that was detected.
® Then afb-voiceservice-highlevel will call the startListening API of the active voice-agent-binding. Along with that it also passes
the offset buffering location and the detected wakeword.
® voice-agent-binding, upon receiving startListening call, will transition between LISTENING, THINKING, and SPEAKING states and will regularly
publish onDialogStateChanged event with its current state to afb-voiceservice-highlevel.
® voice-agent-binding will start reading audio input until stopListening is called or until end of speech is detected. Once end of speech is detected
it responds with onEndOfSpeechDetected event.
® Voice agent will perform either cloud based or onboard ASR, NLU and triggers different actionable responses.
© If the response is music audio playback, voice-agent-binding will interface with AGL framework's media player binding to create an audio
channel and stream the audio.



o If voice-agent-binding needs to present a TTS as response or initiate a multi turn dialog, it will do so by calling audio 4a binding and
moving to SPEAKING state. In this case, the afb-voiceservice-highlevel will also move to SPEAKING state. The Voice Dialog Ul will
present the Ul representing the SPEAKING state of the voice agent.

o If the response needs to command a system application to perform an action like NAVIGATE_TO or CALL, then it will send a topic
based message/intent using domain specific multimodal interaction manager APIs of afb-voiceservice-highlevel binding.

© If there is an associated Ul card to be displayed, voice-agent-binding will send another message to the card rendering application using
tmultimodal interaction manager APIs of afb-voiceservice-highlevel binding.

Bindings

The Voice Services architecture in AGL is layered into two levels. They are High Level Voice Service component and vendor software components with
Voice Agents and Wake Word detection solutions. In the above architecture, the high level voice service is composed of multiple bindings (colored in
green) that will be part of the AGL framework. And the vendor software layer composes of voice agent binding and wake word binding that hosts the
vendor specific voice assistant software. The system provides flexibility to voice assistant vendors to provide their software as code or binary as long as
they abide by the Voice Agent API specifications.

Below is a technical description of each of these binding in both the levels.

High Level Voice Service
High level voice services primarily runs in following two well known modes.
® Tap-To-Talk Mode
o In this mode, the user will need to press the tap-to-talk button on the car steering wheel to talk to the voice agents.
o If user doesn't mention the wake word then the utterance will be routed to the default voice agent.
© If user mentions a wake word, then the utterance will be routed the appropriate agent.
® Always listening Mode
© In this mode, upon wake word detection the utterance will be routed to the appropriate voice agent.

This design makes no assumptions on the mode in which the high level voice service component is configured and running.

1) agl-service-voice-high
This binding has following responsibilities.
® Structurally follows a bridge pattern to abstract the functioning of the specific voice agent software from the application layer.
® The request arbitrator is main entry point to the system. It is responsible for routing the utterance to the correct voice agent based on various
parameters like configuration, wake word detection etc.
® Registers for dialog, connection, auth etc events from voice agents. Maintains the latest and the greatest state of the voice agents.
® Audio/Visual Focus management. Provides an interface using which the voice agents can request audio or visual focus before actual rendering
the content. In multiple active voice agent scenario, we can imagine that each agent would be competing for audio and visual focus. Based on the

priority of the content, the core should grant or deny focus to an agent. In cases where it grants the focus, it has to inform the agent currently
rendering the content to duck or stop. And make audio and visual focus decisions on behalf of the voice agents its managing.

Current Architecture

The following diagrams dives a litter deeper into the low level components of high level voice service (VSHL)
and their dependencies depicted by directional arrows. The dependency in this case can be either through an
association of objects between components or through an interface implementation relationships.

Fore.g.,

A depends on B if A aggregates or composes B.

A depends on B if A implements an interface that is used by B to talk to A.


https://en.wikipedia.org/wiki/Bridge_pattern

High-Level Voice Service
)
VolceAgents )
Utiives
‘r {andler 1
L —
1. EnumerateVoiceAgents
New\/okceAgent
3. RemoveVoiceAgent EventRouter
Core
¥ ab
1. StartListening
Controler 2. ‘CancelListening IAFBARI )
Eapabiities

1

2. getNavigation

3. getPhaneCortrol
1 =
and mare

-/

VoiceAgents Module

<<interface>>

NoiceAgent
+getld()
<interface>> +getName()
IEventFilter +getDescription()
{ +getVendol
+ onlncomingEvent() * %ZL?[?‘;\;{EWakewnm()

etakeWord
This object will be given a chance by the + getWakeWords()

event system to either consume or forward 3
to next filter. Interface to dencte a loaded Voiceagent.

VoiceAgentsDataManager
+ mVoiceAgents: Map of voiceagent D ta | -
VoiceAgentEventsHandler voiceagent object VoiceAgent
1 +mVoiceAgentEventsHandler: List
+ mEvensMap: Map of EventiD to Event +mDefaultVoiceAgentid: String +mid: string
object +mVoiceAgentChangeObservers: Set +mName: string
+ mDescription: string
| +mApi: string
+ createVshiEventsForVoiceAgent() i La1r +mvendor: string
+ g + gent() > + ]
+ subscribe ToVshiEventFromvaiceAgent () +removeVoiceAgent() +misActive: string
| + subscribe TovshiEventFromvoiceAgent () +mWakewords: set
An event manager and router between + getDefaultVoiceAgent()
voiceagents and apps. It manages the + getAllVoiceAgents() + create()
creation and lifetime high level events that + getBventFilter()
can subscribe to L Carries the state of a specific Voiceagent
filter for incoming events from voiceagents This is the entry class in the voiceagents installed in the system.
to route them as necessary to the module. It implements & data model for
subscribed apps. voiceagent data, voiceagent event filtering
-and voiceagent configurations.
e
1.1
<sinterface>> <<interface>>
IAFBADI IVoiceAgentsChangeObserver
+ callSync() | +OnDefaultVaiceAgentChanged()
| +OnVoiceAgentAdded()
Aninterface to abstract AGL Application +OnVoiceAgentRemoved()
Framework Binder concerns + OnVoiceAgentActivewakeWordChanged ()
+ On\VoiceAgentActivated
+ OnVoiceAgentDeactivated()

An observer interface for listening to the
voiceagent module's model changes.

Core Module



<<interface>>
IAFBApI

+ callSync()

1.1

An interface to abstract AGL Application
Framewaork Binder concerns

<<interface>>
IVoice AgentsChangeObserver

+ OnDefaultvoiceAgentChanged()
+ OnVioiceAgentAdded()
+ OnVoiceAgentRemoved()

+
on\fpiceAgentActiveWakeWordChanged
+ OnvoiceAgentActivated()

+ OnVoiceAgentDeactivated()

An interface for listening to voiceagent
module's model changes.

VRRequest

+ mVoiceAgent: [VoiceAgent
+ mRequestid: string

+ startListening()
+ cancel()

Depicts the state and the functions of
a speech recognition request started
from the high-level voiceservice for a
specific voiceagent

o

L

VRRequestProcessor

VRRequestProcessorDelegate

+mVoiceAgentsChangeObserver:
IVoiceAgentsChangeObserver

+mDelegate: VRRequestProcessorDelegate

+ mDefaultVoiceAgent : IVoiceAgent
+ MVRRequests : Map of voiceagent
Id to VRRequest object

+startListening()
+ cancel()
+ getVoiceAgentsChangeObserver()

Entry class for core module. This is
responsible for handling start and cancel

+ setDefaultvoiceAgent()

+ getDefaultVioiceAgent()

+ startRequestForVoiceAgent()
+ cancelAllRequests()

Delegate class that actually handles
the creation, association and routing

listening requests from the controller and
WVRAgentsQbserver arbitrating a request to the correct voiceagent of a request to voiceagent binding.
| binding. Also implements observer for
+ mWeakDelegate : listening to changes in voiceagents module.
VRRequestProcessorDelegate
+ OnDefaultVoice AgentChanged() 0.1 0.1
+ OnVoiceAgentAdded() -
+ OnvoiceAgentRemoved()
+
OfvoiceAgentActiveWakeWordChanged
+ OnvoiceAgentActivated() 0.1
+ OnVoiceAgentDeactivated() k> i
‘Observer implementation for observing to
changes in the voiceagents data model in
the Voiceagents module.
Capabilities Module
TemplateRuntime
terfa
CapabilitiesFactory 0.1 M >
. +getName
+ mTemplateRuntime D + getUpsireamMessages|()
ICapability list
+ mNavigation: ICapability
Interface that defines a
+ getTemplateRuntime() Navigation capability.
+ getNavigation() rName ST
0.1 + mUpstreamMessages:
An entry class of the o list
capabilities module ind +
respansible that acts as a mD
factory for creating list
individual capabiliies. = 0.1
PublisherForwarder
+ mSubscriberForwarder
:SubscriberForwarder
+mCapability: lcapability
MessageChannel

CapabilityMessagingService

+mMessageChanneishlap
Map of capability tolts
MessageChannel o

+ mPublisherForwarder

+addSubscriberForwarder()

+forwardMessage()

:PublisherForwarder
+ mSubserigerForwarder
SubscriberForwarder

+publisn()
+subscribe()

+getMessageChannel()
+getNavigation()

This class aids in forwarding each
capabiity's messages upstream
and dowmstream

Sequence Diagrams

MessageChannels one
end is publisher forwarder | 0.1
and the other end

is subscriber forwarder. It
is responsibie for dropping
the message into a
publisher forwarder and
connecting a subscriber
forwarder to it.

Publisher forwarder is the

publisher end of the message
channel. It currently biindly

forwards message to the

subscriber forwarder. But in
fuure it can be intercepted for

furiher processing

0.1

SubscriberForwarder

An interface to abstract AGL
Application Framework Binder
concems

+mCapability: lcapability
+mUpstreamEventshap:

of upstream events for this

capability

+ mDownstreamEventsviap:
of downstream events for

this capability

Event

Yap | o1

+ mEventName: string
+ mAfbEvent
afb_event t

+subscribe()
+unsubscribe()

+forwardMessage()
+subscribe()

+publisn()
+IsValid()

<sinterface>>
IAFBADI
+ callsync() 1

Subscriber forwarder handles
subscription and generation of

event per message in the
channel

Awrapper of the AGL
AFB event.




OnLoad

On load the controller will instantiate the entry level classes of each module and inject their dependencies.
voiceagent data in VoiceAgent module.

For e.g Core module observers changes to

Controller Core VoiceAgents Utilities capabilities
sVRRequestProcessor = VRRequestProcesser::create() ol
Lal
sVoiceAgentsDataManager = VoiceAgentsDataManager::create() &
L
sObserver = WoiceAgentsChangeObserver VRRequestProcesser::getVoiceAgentsChangeObserver() o
>
VoiceAgentsDataManager::addChangeObserverisObserver) =
Lt
sEventRouter = EventRouter::create o
>
sCapabilityMessagingService = CapabilityMessagingService::create ul
>
Controller Core VoiceAgents Utilities capabilities
StartListening to Audio Input & Events
App Controller l VoiceAgents ‘ Core l Default VoiceAgent Binding H Event Router Capabilities ‘ EventRouter
Connect over websocket
OnLoad, parse the voiceagent config. :
Add each voiceagent
OnVoiceAgentAdded observer method
set default voiceagent = voiceagent ID
Add each voiceagent
o hanged observer method
Subscribe to events on voiceagent-
Subscribe to events on voiceagent
VoiceAgentsEventHandler::subscribe D
create the events if not already created :
subscribe
Get EventFilter
Returns IEventFilter
Attach IEventFilter
Get Template Runtime capability
Returns ICapability object
IC: ,
On Messagechannel for TemplateRuntime calls subscribe D
Create template runtime upstream and downstream events D
subscribe
tart Listening
Call
On Dialog Event
On Dialog Event
API call
e all publish message
Send message on MessageChannel of Template Runtime D
Publish the template runtime event mapped to the message send from the voiceagent binding :
Template Runtime event
t
Al Controller VoiceAgents Core Default VoiceAgent Bindin Event Router Capabilities EventRouter
PP g g g P

State Diagram




After completing
the TTS response SPEAKING

Completed listening to
user input and system is not in
always listening mode.

When multi turn dizlog
When is ready to listen to user input. is initiated

TTS Response

End of speech is detected
and the designated voice agent is THINKING
running ASR MLU algorithms on the input.

LISTENING

API

vshl/startListening

vshl /startListening

Starts listening for speech input. As a part of request, common configuration related information is passed.

Note: The config inputs below are just exanples and not the final list of configurations.
Request: {
}

Responses: {
"jtype":"afb-reply",
"request": {

"status":"string" // success or bad-state or bad-request
}
"response":{
"request _id": "string" // Request created by this call.
"agent _id": "string" // Agent to which the request has been proxied.

}

vshl/cancel

vshl / cancel Li st eni ng

Cancel s the speech recognition processing in the chosen agent.
If agent id is not passed then the cancel request is sent to the default voice agent.

Request :
{
}

Responses:

{



"jtype":"afb-reply",
"request": {
"status":"string" // success or bad-state or bad-request
}
}

vshl/subscribe

vshl / subscri be

Subscri be/ Unsubscri be to voice service high level events.

"perm ssion": "urn: AGL: perni ssi on: speech: public: accesscontrol "
Request :
{
{
"type":"array",
"itenms" : [{
"type":"string" // List of events to subscribe to
}
]
o
{
"subscri be": "bool ean”
}
}
Responses:
{
"jtype":"afb-reply",
"request": {
"status":"string" // success or bad-state or bad-request
}
}
Events

High Level Voice service layer subscribes from similar states from each of the voice agent's and provides an agent agnostic states back to the application
layer.

For e.g if Alexa is disconnected from its cloud due to issues and Nuance voice agent is connected, then the connection state would be still reported as
CONNECTED back to application layer.

vshl_dialogstate_event

Di al og state describes the state of the currently active voice agent's dialog interaction.

Event Dat a:
{

name "voi ce_di al ogstate_event"
"state":"string"
"agent _id": "integer"

}

Val ues for state are
1) IDLE
Hi gh |l evel voice service is ready for speech interaction.

2) LI STENING
H gh level voice service is currently |istening.



3) THI NKI NG
A custoner request has been conpleted and no nmore input is accepted. In this state, Voice service is working on
a response.

4) SPEAKI NG
Responding to a request w th speech.

vshl_connectionstate_event

Connection state describes the state of the voice agent along with errors.

Event Dat a:
{

name "voi ce_connectionstate_event
"state":"string"
"agent _id": "integer"

}

1) DI SCONNECTED
Voi ce agent is not connected to its voice service endpoint.

2) PENDI NG
Voi ce agent is attenpting to establish connection to its endpoint.

3) CONNECTED
Voi ce agent is connected to its endpoint.

4) CONNECT!I ON_TI MEDOUT
Voi ce agent connection attenpt failed due to excessive load on its server endpoint.

5) CONNECTI ON_ERROR
Captures other network related errors.

vshl_authstate_event

Auth state describes the state of the authorization of the voice agent with its cl oud endpoint.

Event Data:
{

name "voi ce_aut hstate_event"
"state":"string"
"agent _id": "integer"

}

1) UNI NI TI ALl ZED

Aut hori zati on not yet acquired.
2) REFRESHED

Aut hori zati on has been refreshed.
3) EXPI RED

Aut hori zati on has expired.

4) ERROR
Aut hori zation error has occurred.

2) Multi Modal Interaction Manager



An important part of the afb-voiceservice-highlevel binding, that acts as a mediator between the voice agents and applications. The mode of
communication is through messages and architecturally this binding implements a topic based publisher subscriber pattern. The topics can be mapped to
the different capabilities of the voice agents.

Voice Agent A by

Mav, Dial

MultiModal Interaction Manager Dial Dial App

Car control

Car control
Voice Agent B P&

HWVAC App

Event———>
— Publish/Subscribe API calls —»

Message Structure

{
Topic : "{{STRING}}" // Topic or the type of the message
Action: "{STRING}}" // The actual action that needs to be performed by the subscriber.
Requestld: "{{STRING}}" // The request ID associated with this message.

Payload: "{{OBJECT}}" // Payload

Topics

Voice Agent to Applications are downstream messages and Applications to Voice Agent are upstream messages.
Voice agents and applications will have to subscribe to a topic and specific actions within that topic.

DIAL

API

vshl/phonecontrol/publish - For publishing phone control messages below.

vshl/phonecontrol/subscribe - For subscribing to phone control messages below.

Messages
Upstream

{

Topic : "phonecontrol”


https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Action : "dial"
Payload : {
"callld™: "{{STRING}}", // A unique identifier for the call

"callee": {// The destination of the outgoing call
"details": "{{STRING}}", // Descriptive information about the callee
"defaultAddress": { // The default address to use for calling the callee
"protocol™: "{{STRING}}", // The protocol for this address of the callee (e.g. PSTN, SIP, H323, etc.)
"format": "{{STRING}}", // The format for this address of the callee (e.g. E.164, E.163, E.123, DIN5008, etc.)

"value": "{{STRING}}", // The address of the callee.
h

"alternativeAddresses": [{ // An array of alternate addresses for the existing callee
"protocol™: "{{STRING}}", // The protocol for this address of the callee (e.g. PSTN, SIP, H323, etc.)
"format": "{{STRING}}", // The format for this address of the callee (e.g. E.164, E.163, E.123, DIN5008, etc.)

"value": {{STRING}}, // The address of the callee.

i
"required": [ "callld", "callee”, "callee.defaultAddress", "address.protocol”, "address.value" ]
}
}
Upstream
{

Topic : "phonecontrol”
Action : "call_activated"
Payload : {
"callld": "{{STRING}}", // A unique identifier for the call

"required": [ "callld"]

Topic : "phonecontrol”

Action : "call_failed"

Payload : {
"callld": "{{STRING}}", // A unique identifier for the call
"error": "{{STRING}}", // A unique identifier for the call
"message": "{{STRING}}", // A description of the error

"required": [ "callld", "error"

}

Error codes:
4xx range: Validation failure for the input from the @c dial() directive

500: Internal error on the platform unrelated to the cellular network
503: Error on the platform related to the cellular network

Topic : "phonecontrol”

Action : "call_terminated"



Payload : {
"callld™: "{{STRING}}", // A unique identifier for the call

"required": [ "callld"]

{
Topic : "phonecontrol”
Action : "connection_state_changed"
Payload : {
"callld": "{{STRING}}", // A unique identifier for the call

"required": [ "callld"]

NAVIGATION

API

vshl/navigation/publish - For publishing navigation messages.

vshl/navigation/subscribe - For subscribing to navigation messages.

Messages
Upstream
{
Topic : "navigation"
Action : "set_destination"
Payload : {
"destination": {
"coordinate™: {
"latitudelnDegrees": {{DOUBLE}},
"longitudelnDegrees": {{DOUBLE}}
h
"name”; "{{STRING}}",
"singleLineDisplayAddress™: "{{STRING}}"

"multipleLineDisplayAddress": "{{STRING}}",
}

{
Topic : "Navigation"
Action : "cancel_navigation"

}



GuiMetadata
API
vshl/guimetadata/publish - For publishing ui metadata messages for rendering.
vshl/guimetadata/subscribe - For subscribing ui metadata messages for rendering.
Messages
Upstream
{
Topic : "guimetadata”
Action : "render_template"
Payload : {

<Yet to be standardized>

Topic : "guimetadata”
Action : "clear_template"
Payload : {

<Yet to be standardized>

Topic : "guimetadata”
Action : "render_player_info"
Payload : {

<Yet to be standardized>

Topic : "guimetadata”
Action : "clear_player_info"
Payload : {

<Yet to be standardized>

3) Configuration

® Provides mechanism for OEMs to configure its functionality. OEMs should be able to configure



List of active agents

Assign roles and responsibilities of each agent
Language setting

Default Agent

Enable/Disable Fallback Invocation mode
Enable/Disable Agent Switching during multi turn dialog
... more

O O 0 O O O O

API

vshl/enumerate_agents

vshl / enuner at eVoi ceAgent s

"perm ssion": "urn: AG: perni ssion: vshl : voi ceagent s: public"

Enunerates and return an array of voice agents running in the system This mght be need for the applications
like settings to be able to present sonme U with a list of agents to enabl e/di sable, show status etc.

Request :
{1}

Responses: {
"jtype":"afb-reply",
"request": {
"status":"string" // success or bad-state or bad-request
}
"response": {
"type":"array",

"itens"
[
{
"name":"string",
"description":"string",
"agent _id":"integer" // Voice agent |ID

"status":"string" // enabled, disabled

vshl/setActive

vshl / set Def aul t Voi ceAgent

Activate or deactivate a voice agent.

"perm ssion": "urn: AGL: perm ssi on: vshl : voi ceagent s: public"
Request :
{
"agent _id":"integer"
"is_active":"bool ean"
}

Responses: {
"jtype":"afb-reply",
"request":

{



"status":"string" // success or bad-state or bad-request }
}
}

afb-voiceservice-wakeword-detector

® Provides an interface primarily for the core afb-voiceservice-highlevel to listen for wakeword detection events and make request routing
decisions.
® This binding will internally talk to or host voice assistant vendor specific wake word solutions to enable the wake word detection.

Voice Agent Vendor Software

1) voice-agent-binding

® The API specification of voice agent is defined in this document. All the vendor specific voice agent bindings will follow the same specific to
integrate with the high level voice service.

® Voice Agent will listen to audio input when instructed by the high level voice service.

® Voice Agent will run its own automatic speech recognition, natural language processing, generates intents to perform requested action.

® Voice Agent will have its own authentication, connection and dialog management flows. And generates events to notify the high level voice
service of its state transitions.

® Voice Agent will use the high level voice service's interaction manager to command system applications to perform tasks, like Route to a specific
geo code, Dial a Number, Play music etc.

API

voiceagent/setup

voi ceagent / set up

This APl is exposed to high level voice service to pass any setup or high level config infornmation |ike
agent _id to the voice agent.

"perm ssion": "urn: AG: perm ssion: speech: public:accesscontrol "
Request :
{
"agent _id":"integer"
"] anguage": "string"
}
Responses:
{
"jtype":"afb-reply",
"request": {
"status":"string" // success or bad-state or bad-request
}
}

voiceagent/cancel

voi ceagent / cancel

Stop the voice agent and its currently running speech recognition processes.

"perm ssion": "urn: AGL: perni ssi on: speech: public: accesscontrol "

Request :



}
Responses:
{
"jtype":"afb-reply",
"request":{
"status":"string" // success or bad-state or bad-request
}
}

voiceagent/startListening

voi ceagent/startLi stening

Start the listening for speech input. As a part of request, comon configuration related information is passed.

Note: The config inputs below are just exanples and not the final list of configurations.
"perm ssion": "urn: AGL: perm ssi on: speech: publ i c: audi ocontrol "
Request :
{
"request _id": "string" // Request |ID assigned by the high | evel voice service.

"l anguage": "string"
"l ocation":"string"
"preferred_network_node":"string" // online, offline, hybrid

"audi o_i nput _device": "string" // ID of the alsa device to read the input
}
Responses:
{
"jtype":"afb-reply",
"request": {
"status":"string" // success or bad-state or bad-request
}
}
Events

voiceagent_endofspeechdetected_event

Voice agent will notify its clients that end of speech is detected.

Event Dat a:
{

"name" "voi ceagent _endof speechdet ect ed_event "

"agent _id": "integer"

"request _id": "integer" // the request for which the end of speech is detected
}

voiceagent-dialogstate-event

Di al og state describes the state of the currently active voice agent's dialog interaction.

Event Dat a:



name "voi ceagent _di al ogstate_event™"

"state":"string"

"agent _id": "integer"

"request _id": "string" // The request that caused this dialog state transition.

Values for state are
1) IDLE
Hi gh |l evel voice service is ready for speech interaction.

2) LI STENI NG
Hi gh | evel voice service is currently |istening.

3) THI NKI NG
A custoner request has been conpleted and no nore input is accepted. In this state,
a response.

4) SPEAKI NG
Responding to a request w th speech.

voiceagent_connectionstate_event

Connection state describes the state of the voice agent along with errors.

Event Dat a:
{

narme "voi ceagent _connecti onst at e_event
"state":"string"
"agent _id": "integer"

}

1) DI SCONNECTED
Voi ce agent is not connected to its voice service endpoint.

2) PENDI NG
Voi ce agent is attenpting to establish connection to its endpoint.

3) CONNECTED
Voi ce agent is connected to its endpoint.

4) CONNECTI ON_TI MEDOUT
Voi ce agent connection attenpt failed due to excessive load on its server endpoint.

5) CONNECTI ON_ERROR
Captures other network related errors.

voiceagent_authstate_event

Voi ce service is working on

Auth state describes the state of the authorization of the voice agent with its cloud endpoint if any.

Event Dat a:

{
"name" : "vshl _aut hstate_event"
"state":"string"
"agent _id": "integer"

}

1) UNI NI TI ALl ZED
Aut hori zation not yet acquired.



2) REFRESHED
Aut hori zati on has been refreshed.

3) EXP| RED

Aut hori zati on has expired.

4) ERROR
Aut hori zation error has occurred.

Domain Specific Flows

Note: The role of high level voice service binding is not depicted in the below flows for ease of understanding. All the flows are triggered assuming that
user chose "hold to talk" to initiate the speech flow. There will slight modifications as explained in the high level workflow above if tap to talk or wake word
options are used.

Climate Control (CC)

Use cases

1 CC - on/off Turn on or off the climate control
(e.g. turn off climate control)

2 CC - specific temperature Set the car's temperature to 70 degrees
(e.g. set the temperature to 70)

3 CC.- target range Set the car's heating to a set gradient
(e.g. set the heat to high)

4 CC - min / max temperature Set the car's temperature to max or min A/C (or heat)
(e.g. set the A/C to max)

5 CC - increase / decrease temperature | Increase or decrease the car's temperature
(e.g. increase the temperature)

6 CC - specific fan speed Set the fan to a specific value
(e.g. set the fan speed to 3)

7 CC - target range Set the fan to a specific value
(e.g. set the fan speed to high)

8 CC - min / max fan speed Set the fan to min / max
(e.g. set the fan to max)

9 CC - increase / decrease fan speed Increase / decrease the fan speed
(e.g. increase the air flow)

10 | CC - Temp Status What is the current temperature of the car
(e.g. how hot is it in my car?)

11 CC - Fan Status Determine the fan setting

(e.g. what's the fan set to?)

Set the cabin temperature

"Set the cabin temperature to 70 degrees"



"Set the car's temperature to max or min A/C (or heat)

High Level
Voice Service

Voice Agent
Binding

" Voice Service
VU'CEACWOT"E Interaction HVAC App
PP Manager

Event Subscription > Event Subscription

Tap Button

Press Detected StartListening AP -

Prepare and
start for

speach input

-- OnDialogStateEvent = Listening b

Tap Button S
Released StopListening AP1—J»

Perform ASR,
NLU

------ OnDialogStateEvent = Idle -

Publish = SetTemperate event ————

Setthe cabin
temperature to
70 degrees

W Publish = SetTemperatureR esponse

L LIRS SetTemperateResponse EVent - e

— OnDialogStateEvent = Speaking M

—— OnDialogStateEvent = Idle —Jm

Get the cabin temperature

how hot is it in my car?



High Level Voice Agent

i Voice Service
“"“'“‘AC“'“'”E Interaction HVAC App
PP Manager

Voice Service Binding
Event Subscription » o Event Subscription
Tap Button tani
Prees Detected StartListening API
Prepare and
start for
speach input
- OnDialogStateEvent = Listening b
Tap Button S
Rileased StopListening API—J»
Perform ASR,
MLU
------ OnDialogStateEvent = Idle -
Publish = GetTemperature event ——————J
-------- GetTemperature event ----J
.‘. ............................... Publish = GetTemperateResponse EVEt - «x-rrrrerrrrmmransr e
— OnDialogStateEvent = Speaking &
—— OnDialogStateEvent = Idle —
Navigation
Use cases
1 Set Destination Notify the navigation application to route to specified destination.
Fore.g
"Navigate to nearest star bucks"
"Navigate to my home"
2 Cancel Navigation Cancel the navigation based on touch input or voice.

Foreg

User can say "cancel navigation"

User can cancel the navigation by interacting with the navigation application directly on the device using Touch inputs.
3 Suggest Alternate Route = Suggest an alternate route to the user and proceed as per user preference.

For e.g.



"There is an alternate route available that is 4 minutes faster, Do you wish to select?"
When user says "No", then continue navigation

when user says "Yes", then proceed with navigation.

Set Destination

High level
Voice Service

Voice Agent
Binding

; Voice Service AGL
VmceAChrome Interaction Navigation
PP Manager ADD

Event Subscription ————————————jp» [4—— Event Subscription

Tap Button

Presh Detected StartListening AP

Prepare and

start for
speech input

-- OnDialogStateEvent = Listening

Tap Button S
Released StopListening APl —J

Perform ASR,
NLU

------ OnDialogStateEvent = Idle -

———— Publish = SetDestination event ——————»

Launches the
navigation Ul
and starts the
navigation

o Publish = OnStartedMavigation —

o RECTTTECE RN OnStartedMavigation

— OnDialogStateEvent = Speaking M

"Routing to starbucks at..."

—— OnDialogStateEvent = Idle —Jm

Cancel Navigation

Voice initiated



High Level
Voice Service

Voice Agent
Binding

. Voice Service
Voiee Chrome Interaction HVAC App
PP Manager

Event Subscription ——————————Jp»{t— Event Subscription

Tap Button

Press Detected StartListening AP| P

Prepare and

start for
speech input

-- OnDialogStateEvent = Listening b

Tap Button et
Released StopListening API-J»

------ OnDialogStateEvent = Idle -~}

Publish = CancelNavigation message ——j»

-------- CancelNavigation Event ----

Cancels the
current
navigation

[ Publish = OnCancelledMavigation =

-

=+ OnCancelledMavigation Event -

— OnDialogStateEvent = Speaking M

Prompt saying "MNavigation
is cancelled.”

OnDialogStateEvent = Idle —H

Select Alternate Route

This use case is currently unsupported by Alexa. Its a high level proposal on how the interaction is supposed to work. Alternatively, AGL navigation app
can use STT and TTS API (out of scope for this doc) with some minimal NLU to enable similar behavior.



High Level Voice Agent Voice Chrome e Na\‘:‘;a']ion
Voice Service Binding App e App

Event Subscription ————————————jp» [—— Event Subscription

Tap Button

Press Detected StartListening API

Prepare and
start for
speech input

-~ OnDialogStateEvent = Listening

Tap Button StopListening API—»

Perform ASR,
NLU

------ OnDialogStateEvent = Idle -]

——— Publish = SetDestination event ————»

Launches the
navigation Ul
and starts the
navigation

L« Publish = OnStarted Navigation —

o CTIRITEERE OnStartedMavigation EVeNt «=sesssesesssmsasanees

- OnDialogStateEvent = Speaking b

"Routing to starbucks at .."

------ OnDialogStateEvent = Idle ---

@ Publish = SuggestRoute event —

oice Agentwil
handle this and
start dialog

OnDialogStateEvent = >
Speaking

"There is anew route that
saves 4 minutes. do you
wish to select?”

OnDialogState= ... >
ExpectSpeech

User response
is uploaded and
processed.

Publish = SetDestination eVent =———

New route is
selected if
destination changed
and Ul is updated




Technical References & Demos

Technical Video Presentation of AGL Speech Framework High-Level Architecture and Live Demo with Alexa Integration.

Alexa Demo on Renesas board.


https://www.dropbox.com/s/8jcvo6u6iosyi2s/AGLSpeechFramework_Video_Presentation.mp4?dl=0

	Speech EG Architecture

