
4.7 CAN Communication
Abstraction
CAN is the most major communication bus among ECUs in-vehicle systems. It is sufficient and reliable to obtain vehicle information such as speed data
and HVAC control commands.

Linux has SocketCAN implementation for CAN communication to utilize the popular Berkley socket API. However, on an IVI system, it is expected that a
communication function will be provided to meet the following requirements.

The IVI platform needs to notify CAN data from other ECUs or from external sources to the necessary applications which request to receive the
CAN data.
The IVI platform needs to monitor the periodic reception of CAN data from external sources and to notify the availability of delivery

For these reasons, it is necessary to define a communication function for handling CAN data.

This chapter describes the use cases with CAN Communication function, the functional requirements for realizing the use cases, and the functions of the
Basesystem that can be used as a sample implementation.

Use case
In the following table, use cases which need CAN Communication module for services are described.

Table 1

Item Description

UC.
CC.
1

CAN data send
from application to
other ECU

When the user presses the button to lower the temperature of the air conditioner, a request is sent to the ECU that controls
the temperature of the air conditioner. This causes cold air to come out to lower the interior temperature.

UC.
CC.
2

CAN data
distribution to
registered
application

IVI system receives the signal data of the steering sensor via CAN bus, when a user is driving the car to park with the gear
set reverse checking the predicted trajectory line on the Back-guide monitor.

UC.
CC.
3

Detect suspension
and resume

The CAN communication module receives the CAN data and notifies the registered destination of the data. If the required
data is not received for a certain period of time, an unreceived event is sent to the destination, and if the data is received,
the destination is notified of the data.

Functional Requirements
This table includes the functional requirements of CAN Communication module.

Table 2

Item Related
use cases

Description

RQ.
CC.1

Utilization of the function from
the application

UC.CC.1 CAN Communication module shall receive the CAN data send request from the application.

RQ.
CC.2

CAN data distribution
registration

UC.CC.2 CAN Communication module shall be able to register the distribution of applications that want to receive CAN
data.

RQ.
CC.3

CAN data distribution
registration

UC.CC.2 CAN Communication module shall send CAN data to the registered application.

RQ.
CC.4

Detect suspension UC.CC.3 The CAN Communication module shall notify the registered delivery destination of not being received if CAN
data is not received within the specified time.

RQ.
CC.5

Resume after suspension UC.CC.3 In the case of RQ.CC.4 status, if the CAN Communication module receives CAN data, it shall notify the
registered application of the CAN data.

CAN Communication in Basesystem

Reference implementation in Basesystem

In the Basesystem implementation, the functional module that performs CAN communication is Communication. The CAN data flow based on UC.CC.1
and UC.CC.2 of the use case is illustrated in Figure 3. In the Basesystem implementation, the CAN communication functions are implemented via the
HAL, which is implemented to allow data exchange independent of the device.

Send CAN data received from the application to CAN HAL.
Send CAN data received from CAN HAL to the registered applications.
Monitor the CAN data communication suspension and notify the registered applications of resume.

Figure 3

The contributed CAN HAL is a Stub with no implementation part, and if you want to use the Communication module, you have to implement the HAL.

	4.7 CAN Communication

