
1.
2.

3.
4.
5.
6.
7.

1.

2.
3.
4.

1.
2.
3.

4.
5.
6.

1.
2.
3.
4.

MQTT Client for kuksa.val and AWS IoT: Project
Specification

Introduction

This project aims to develop an MQTT client that interfaces with the kuksa.val platform for accessing vehicle signals. The client will provide compatibility
with AWS IoT leverage current standards for vehicle communication. Security will be enforced through mTLS authentication.

Definition of Done

Functional Requirements

MQTT Client Implementation: The client must successfully interface with kuksa.val to access vehicle signals.
AWS IoT Compatibility: A working reference implementation for AWS IoT is required, including device onboarding and data routing to Amazon
Timestream DB.
Compliance: The client must adhere to current VSS specifications.
Vehicle Identification: The client must be able to resolve vehicle identification numbers or other unique identifiers.
Protobuf: Payload definition for MQTT is defined.
Configurability: The client should be adaptable to work with any MQTTv5 broker.
AWS IoT Demo: A working demo with AWS IoT device onboarding, message routing to Amazon Timestream DB, and vehicle signal
visualizations through Amazon Managed Grafana.

Non-Functional Requirements

Documentation: Comprehensive documentation must exist, detailing the architecture, setup, and usage instructions, including steps for the AWS
IoT demo.
Unit Tests: All critical functionalities, including the AWS IoT demo, must be covered by unit tests.
Peer Review: The code must be reviewed by at least two engineers and be approved.
Security: mTLS should be used as the primary method for secure authentication.

Requirements

Functional Requirements

Language and Libraries: The client implementation should be done in C/C++, Python is an option as well.
MQTT Protocol Version: The client must be compatible with MQTTv5.
Cloud Architecture: Architecture details for interfacing with AWS IoT, including components for device onboarding and message routing to
Amazon Timestream DB.
Data Schema: Define a schema for vehicle signals based on VSS
Protobuf Specifications: Focusing on signal updates.
Configuration File: Design a user-configurable file for broker details and other settings.

Non-Functional Requirements

Unit Testing Framework: Identify the framework and libraries to be used for unit testing.
Documentation Standards: Establish standards and templates for documenting the code and architecture.
Code Review Process: Outline the process and criteria for peer code reviews.
Security Protocols: Specify the mTLS version and cipher suites that will be supported.

High level architecture

1.
2.

a.
b.

3.
4.

a.
i.
ii.
iii.

5.

Next Steps

Migrate this document to Confluence
Task Break Down: Start breaking down the work needed to deliver the mentioned DoD

Interfaces definition
Cloud breakdown

Task Allocation: Assign specific components and tasks to team members, including tasks related to the AWS IoT demo.
Development Timeline: Establish milestones and deadlines, ensuring that the demo is ready for a specified milestone.

Embedded World Demo as a target
Start in January
Targeting March for vehicle part
End by April

Community Outreach: Strategies for involving the AGL community in project feedback and contributions.

Monday, October 30

Task Breakdown

Device Part:

Determine the Signals for Demonstration

Description: Identify which CAN messages are available and decide which vehicle signals should be sent to the cloud for monitoring.
Owner: Nenad
Timeline: 13th of November
Dependencies: None
Resources: CAN message logs, kuksa.val documentation

Nenad will get the list of signals from the the current FW demo and ask around about what are signals are used

Signal Forwarding Logic

Description: Decide the frequency or event triggers for forwarding the selected vehicle signals.
Owner: Scott
Timeline: [mid Jan - end Jan]
Dependencies: Determine the Signals for Demonstration
Resources: Engineering specifications

Decided to go with time based and trigger implementation located in a local config file
Write an example of the file for a specific usecase

Proto File Generation

Description: Generate a proto file that defines the messaging format
Owner: [Name/Role]
Timeline: [mid Jan - end Jan]
Dependencies: Signal Forwarding Logic
Resources: Protocol Buffers info

Define the timestamp

identifier, do we need it to be part of the payload, or an MQTT topic, or we can simply use the MQTT client ID
This is a prerequisite for building out the cloud part of ingestion

Vehicle Onboarding

Description: Design and implement the mechanism for vehicle onboarding, including certificate generation and client ID definition.
Owner: Scott
Timeline: [end Jan - mid Feb]
Dependencies: None
Resources: AWS IoT documentation

How do we get a vehicle identifier (VIN)?
Populate values in VSS perhaps?
This should part of that static config

This should come from a TPM in a real world scenario

MQTT Device Client Development

Description: Develop the MQTT client to interface with kuksa.val and AWS IoT based on previous task findings.
Owner: Scott
Timeline: [end Feb - mid March]
Dependencies: Create Proto File, Vehicle Onboarding
Resources: MQTTv5 specifications, AWS SDK, other MQTT Clients

Cloud Components:

IaaC Setup

Description: Set up Infrastructure as Code for provisioning and managing cloud resources.
Owner: Nenad
Timeline: [Start Date - End Date]
Dependencies: None
Resources: AWS CloudFormation or CDK

Image Parser Component

Description: Develop a component to parse the vehicle signal images for cloud ingestion.
Owner: Nenad
Timeline: [23rd of Feb - 28th of Feb]
Dependencies: IaaC Setup, Device part: Proto File generation
Resources: AWS Lambda

Time Stream Injector Component

Description: Implement a component to insert the parsed signals into the Amazon Time Stream database.
Owner: Nenad
Timeline: [28th of Feb - 5th of March]
Dependencies: Image Parser Component
Resources: Amazon Time Stream DB documentation

Time Stream Data Modeling

Description: Model the Time Stream database to accommodate the vehicle signals.
Owner: Nenad
Timeline: [5th of March - 14th of March]
Dependencies: Time Stream Injector Component
Resources: Data modeling tools

Grafana Setup for Data Visualization

Description: Set up Grafana to create dashboards for visualizing vehicle signals.
Owner: Nenad
Timeline: [14th of March - 20th of March]
Dependencies: Time Stream Data Modeling
Resources: Amazon Managed Grafana documentation

Integration Work

Description: Integration of device MQTT client and cloud components .
Owner: Nenad/Scott
Timeline: [start March - end March]
Dependencies: All other task
Resources: None

	MQTT Client for kuksa.val and AWS IoT: Project Specification

